Documentation

Mathlib.Algebra.Group.Subsemigroup.Operations

Operations on Subsemigroups #

In this file we define various operations on Subsemigroups and MulHoms.

Main definitions #

Conversion between multiplicative and additive definitions #

(Commutative) semigroup structure on a subsemigroup #

Operations on subsemigroups #

Semigroup homomorphisms between subsemigroups #

Operations on MulHoms #

Implementation notes #

This file follows closely GroupTheory/Submonoid/Operations.lean, omitting only that which is necessary.

Tags #

subsemigroup, range, product, map, comap

Conversion to/from Additive/Multiplicative #

Subsemigroups of semigroup M are isomorphic to additive subsemigroups of Additive M.

Equations
  • One or more equations did not get rendered due to their size.
@[reducible, inline]

Additive subsemigroups of an additive semigroup Additive M are isomorphic to subsemigroups of M.

Equations

Additive subsemigroups of an additive semigroup A are isomorphic to multiplicative subsemigroups of Multiplicative A.

Equations
  • One or more equations did not get rendered due to their size.
@[reducible, inline]

Subsemigroups of a semigroup Multiplicative A are isomorphic to additive subsemigroups of A.

Equations

comap and map #

def Subsemigroup.comap {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M →ₙ* N) (S : Subsemigroup N) :

The preimage of a subsemigroup along a semigroup homomorphism is a subsemigroup.

Equations
def AddSubsemigroup.comap {M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M →ₙ+ N) (S : AddSubsemigroup N) :

The preimage of an AddSubsemigroup along an AddSemigroup homomorphism is an AddSubsemigroup.

Equations
@[simp]
theorem Subsemigroup.coe_comap {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (S : Subsemigroup N) (f : M →ₙ* N) :
(comap f S) = f ⁻¹' S
@[simp]
theorem AddSubsemigroup.coe_comap {M : Type u_1} {N : Type u_2} [Add M] [Add N] (S : AddSubsemigroup N) (f : M →ₙ+ N) :
(comap f S) = f ⁻¹' S
@[simp]
theorem Subsemigroup.mem_comap {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {S : Subsemigroup N} {f : M →ₙ* N} {x : M} :
x comap f S f x S
@[simp]
theorem AddSubsemigroup.mem_comap {M : Type u_1} {N : Type u_2} [Add M] [Add N] {S : AddSubsemigroup N} {f : M →ₙ+ N} {x : M} :
x comap f S f x S
theorem Subsemigroup.comap_comap {M : Type u_1} {N : Type u_2} {P : Type u_3} [Mul M] [Mul N] [Mul P] (S : Subsemigroup P) (g : N →ₙ* P) (f : M →ₙ* N) :
comap f (comap g S) = comap (g.comp f) S
theorem AddSubsemigroup.comap_comap {M : Type u_1} {N : Type u_2} {P : Type u_3} [Add M] [Add N] [Add P] (S : AddSubsemigroup P) (g : N →ₙ+ P) (f : M →ₙ+ N) :
comap f (comap g S) = comap (g.comp f) S
@[simp]
theorem Subsemigroup.comap_id {P : Type u_3} [Mul P] (S : Subsemigroup P) :
comap (MulHom.id P) S = S
@[simp]
theorem AddSubsemigroup.comap_id {P : Type u_3} [Add P] (S : AddSubsemigroup P) :
comap (AddHom.id P) S = S
def Subsemigroup.map {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M →ₙ* N) (S : Subsemigroup M) :

The image of a subsemigroup along a semigroup homomorphism is a subsemigroup.

Equations
def AddSubsemigroup.map {M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M →ₙ+ N) (S : AddSubsemigroup M) :

The image of an AddSubsemigroup along an AddSemigroup homomorphism is an AddSubsemigroup.

Equations
@[simp]
theorem Subsemigroup.coe_map {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M →ₙ* N) (S : Subsemigroup M) :
(map f S) = f '' S
@[simp]
theorem AddSubsemigroup.coe_map {M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M →ₙ+ N) (S : AddSubsemigroup M) :
(map f S) = f '' S
@[simp]
theorem Subsemigroup.mem_map {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M →ₙ* N} {S : Subsemigroup M} {y : N} :
y map f S xS, f x = y
@[simp]
theorem AddSubsemigroup.mem_map {M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M →ₙ+ N} {S : AddSubsemigroup M} {y : N} :
y map f S xS, f x = y
theorem Subsemigroup.mem_map_of_mem {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M →ₙ* N) {S : Subsemigroup M} {x : M} (hx : x S) :
f x map f S
theorem AddSubsemigroup.mem_map_of_mem {M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M →ₙ+ N) {S : AddSubsemigroup M} {x : M} (hx : x S) :
f x map f S
theorem Subsemigroup.apply_coe_mem_map {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M →ₙ* N) (S : Subsemigroup M) (x : S) :
f x map f S
theorem AddSubsemigroup.apply_coe_mem_map {M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M →ₙ+ N) (S : AddSubsemigroup M) (x : S) :
f x map f S
theorem Subsemigroup.map_map {M : Type u_1} {N : Type u_2} {P : Type u_3} [Mul M] [Mul N] [Mul P] (S : Subsemigroup M) (g : N →ₙ* P) (f : M →ₙ* N) :
map g (map f S) = map (g.comp f) S
theorem AddSubsemigroup.map_map {M : Type u_1} {N : Type u_2} {P : Type u_3} [Add M] [Add N] [Add P] (S : AddSubsemigroup M) (g : N →ₙ+ P) (f : M →ₙ+ N) :
map g (map f S) = map (g.comp f) S
@[simp]
theorem Subsemigroup.mem_map_iff_mem {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M →ₙ* N} (hf : Function.Injective f) {S : Subsemigroup M} {x : M} :
f x map f S x S
@[simp]
theorem AddSubsemigroup.mem_map_iff_mem {M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M →ₙ+ N} (hf : Function.Injective f) {S : AddSubsemigroup M} {x : M} :
f x map f S x S
theorem Subsemigroup.map_le_iff_le_comap {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M →ₙ* N} {S : Subsemigroup M} {T : Subsemigroup N} :
map f S T S comap f T
theorem AddSubsemigroup.map_le_iff_le_comap {M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M →ₙ+ N} {S : AddSubsemigroup M} {T : AddSubsemigroup N} :
map f S T S comap f T
theorem Subsemigroup.gc_map_comap {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M →ₙ* N) :
theorem AddSubsemigroup.gc_map_comap {M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M →ₙ+ N) :
theorem Subsemigroup.map_le_of_le_comap {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (S : Subsemigroup M) {T : Subsemigroup N} {f : M →ₙ* N} :
S comap f Tmap f S T
theorem AddSubsemigroup.map_le_of_le_comap {M : Type u_1} {N : Type u_2} [Add M] [Add N] (S : AddSubsemigroup M) {T : AddSubsemigroup N} {f : M →ₙ+ N} :
S comap f Tmap f S T
theorem Subsemigroup.le_comap_of_map_le {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (S : Subsemigroup M) {T : Subsemigroup N} {f : M →ₙ* N} :
map f S TS comap f T
theorem AddSubsemigroup.le_comap_of_map_le {M : Type u_1} {N : Type u_2} [Add M] [Add N] (S : AddSubsemigroup M) {T : AddSubsemigroup N} {f : M →ₙ+ N} :
map f S TS comap f T
theorem Subsemigroup.le_comap_map {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (S : Subsemigroup M) {f : M →ₙ* N} :
S comap f (map f S)
theorem AddSubsemigroup.le_comap_map {M : Type u_1} {N : Type u_2} [Add M] [Add N] (S : AddSubsemigroup M) {f : M →ₙ+ N} :
S comap f (map f S)
theorem Subsemigroup.map_comap_le {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {S : Subsemigroup N} {f : M →ₙ* N} :
map f (comap f S) S
theorem AddSubsemigroup.map_comap_le {M : Type u_1} {N : Type u_2} [Add M] [Add N] {S : AddSubsemigroup N} {f : M →ₙ+ N} :
map f (comap f S) S
theorem Subsemigroup.monotone_map {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M →ₙ* N} :
theorem AddSubsemigroup.monotone_map {M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M →ₙ+ N} :
theorem Subsemigroup.monotone_comap {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M →ₙ* N} :
theorem AddSubsemigroup.monotone_comap {M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M →ₙ+ N} :
@[simp]
theorem Subsemigroup.map_comap_map {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (S : Subsemigroup M) {f : M →ₙ* N} :
map f (comap f (map f S)) = map f S
@[simp]
theorem AddSubsemigroup.map_comap_map {M : Type u_1} {N : Type u_2} [Add M] [Add N] (S : AddSubsemigroup M) {f : M →ₙ+ N} :
map f (comap f (map f S)) = map f S
@[simp]
theorem Subsemigroup.comap_map_comap {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {S : Subsemigroup N} {f : M →ₙ* N} :
comap f (map f (comap f S)) = comap f S
@[simp]
theorem AddSubsemigroup.comap_map_comap {M : Type u_1} {N : Type u_2} [Add M] [Add N] {S : AddSubsemigroup N} {f : M →ₙ+ N} :
comap f (map f (comap f S)) = comap f S
theorem Subsemigroup.map_sup {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (S T : Subsemigroup M) (f : M →ₙ* N) :
map f (S T) = map f S map f T
theorem AddSubsemigroup.map_sup {M : Type u_1} {N : Type u_2} [Add M] [Add N] (S T : AddSubsemigroup M) (f : M →ₙ+ N) :
map f (S T) = map f S map f T
theorem Subsemigroup.map_iSup {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {ι : Sort u_5} (f : M →ₙ* N) (s : ιSubsemigroup M) :
map f (iSup s) = ⨆ (i : ι), map f (s i)
theorem AddSubsemigroup.map_iSup {M : Type u_1} {N : Type u_2} [Add M] [Add N] {ι : Sort u_5} (f : M →ₙ+ N) (s : ιAddSubsemigroup M) :
map f (iSup s) = ⨆ (i : ι), map f (s i)
theorem Subsemigroup.map_inf {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (S T : Subsemigroup M) (f : M →ₙ* N) (hf : Function.Injective f) :
map f (S T) = map f S map f T
theorem AddSubsemigroup.map_inf {M : Type u_1} {N : Type u_2} [Add M] [Add N] (S T : AddSubsemigroup M) (f : M →ₙ+ N) (hf : Function.Injective f) :
map f (S T) = map f S map f T
theorem Subsemigroup.map_iInf {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {ι : Sort u_5} [Nonempty ι] (f : M →ₙ* N) (hf : Function.Injective f) (s : ιSubsemigroup M) :
map f (iInf s) = ⨅ (i : ι), map f (s i)
theorem AddSubsemigroup.map_iInf {M : Type u_1} {N : Type u_2} [Add M] [Add N] {ι : Sort u_5} [Nonempty ι] (f : M →ₙ+ N) (hf : Function.Injective f) (s : ιAddSubsemigroup M) :
map f (iInf s) = ⨅ (i : ι), map f (s i)
theorem Subsemigroup.comap_inf {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (S T : Subsemigroup N) (f : M →ₙ* N) :
comap f (S T) = comap f S comap f T
theorem AddSubsemigroup.comap_inf {M : Type u_1} {N : Type u_2} [Add M] [Add N] (S T : AddSubsemigroup N) (f : M →ₙ+ N) :
comap f (S T) = comap f S comap f T
theorem Subsemigroup.comap_iInf {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {ι : Sort u_5} (f : M →ₙ* N) (s : ιSubsemigroup N) :
comap f (iInf s) = ⨅ (i : ι), comap f (s i)
theorem AddSubsemigroup.comap_iInf {M : Type u_1} {N : Type u_2} [Add M] [Add N] {ι : Sort u_5} (f : M →ₙ+ N) (s : ιAddSubsemigroup N) :
comap f (iInf s) = ⨅ (i : ι), comap f (s i)
@[simp]
theorem Subsemigroup.map_bot {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M →ₙ* N) :
@[simp]
theorem AddSubsemigroup.map_bot {M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M →ₙ+ N) :
@[simp]
theorem Subsemigroup.comap_top {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M →ₙ* N) :
@[simp]
theorem AddSubsemigroup.comap_top {M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M →ₙ+ N) :
@[simp]
theorem Subsemigroup.map_id {M : Type u_1} [Mul M] (S : Subsemigroup M) :
map (MulHom.id M) S = S
@[simp]
theorem AddSubsemigroup.map_id {M : Type u_1} [Add M] (S : AddSubsemigroup M) :
map (AddHom.id M) S = S
def Subsemigroup.gciMapComap {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M →ₙ* N} (hf : Function.Injective f) :

map f and comap f form a GaloisCoinsertion when f is injective.

Equations
def AddSubsemigroup.gciMapComap {M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M →ₙ+ N} (hf : Function.Injective f) :

map f and comap f form a GaloisCoinsertion when f is injective.

Equations
theorem Subsemigroup.comap_map_eq_of_injective {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M →ₙ* N} (hf : Function.Injective f) (S : Subsemigroup M) :
comap f (map f S) = S
theorem AddSubsemigroup.comap_map_eq_of_injective {M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M →ₙ+ N} (hf : Function.Injective f) (S : AddSubsemigroup M) :
comap f (map f S) = S
theorem Subsemigroup.map_injective_of_injective {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M →ₙ* N} (hf : Function.Injective f) :
theorem Subsemigroup.comap_inf_map_of_injective {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M →ₙ* N} (hf : Function.Injective f) (S T : Subsemigroup M) :
comap f (map f S map f T) = S T
theorem AddSubsemigroup.comap_inf_map_of_injective {M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M →ₙ+ N} (hf : Function.Injective f) (S T : AddSubsemigroup M) :
comap f (map f S map f T) = S T
theorem Subsemigroup.comap_iInf_map_of_injective {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {ι : Type u_5} {f : M →ₙ* N} (hf : Function.Injective f) (S : ιSubsemigroup M) :
comap f (⨅ (i : ι), map f (S i)) = iInf S
theorem AddSubsemigroup.comap_iInf_map_of_injective {M : Type u_1} {N : Type u_2} [Add M] [Add N] {ι : Type u_5} {f : M →ₙ+ N} (hf : Function.Injective f) (S : ιAddSubsemigroup M) :
comap f (⨅ (i : ι), map f (S i)) = iInf S
theorem Subsemigroup.comap_sup_map_of_injective {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M →ₙ* N} (hf : Function.Injective f) (S T : Subsemigroup M) :
comap f (map f S map f T) = S T
theorem AddSubsemigroup.comap_sup_map_of_injective {M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M →ₙ+ N} (hf : Function.Injective f) (S T : AddSubsemigroup M) :
comap f (map f S map f T) = S T
theorem Subsemigroup.comap_iSup_map_of_injective {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {ι : Type u_5} {f : M →ₙ* N} (hf : Function.Injective f) (S : ιSubsemigroup M) :
comap f (⨆ (i : ι), map f (S i)) = iSup S
theorem AddSubsemigroup.comap_iSup_map_of_injective {M : Type u_1} {N : Type u_2} [Add M] [Add N] {ι : Type u_5} {f : M →ₙ+ N} (hf : Function.Injective f) (S : ιAddSubsemigroup M) :
comap f (⨆ (i : ι), map f (S i)) = iSup S
theorem Subsemigroup.map_le_map_iff_of_injective {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M →ₙ* N} (hf : Function.Injective f) {S T : Subsemigroup M} :
map f S map f T S T
theorem AddSubsemigroup.map_le_map_iff_of_injective {M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M →ₙ+ N} (hf : Function.Injective f) {S T : AddSubsemigroup M} :
map f S map f T S T
theorem Subsemigroup.map_strictMono_of_injective {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M →ₙ* N} (hf : Function.Injective f) :
theorem AddSubsemigroup.map_strictMono_of_injective {M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M →ₙ+ N} (hf : Function.Injective f) :
def Subsemigroup.giMapComap {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M →ₙ* N} (hf : Function.Surjective f) :

map f and comap f form a GaloisInsertion when f is surjective.

Equations
def AddSubsemigroup.giMapComap {M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M →ₙ+ N} (hf : Function.Surjective f) :

map f and comap f form a GaloisInsertion when f is surjective.

Equations
theorem Subsemigroup.map_comap_eq_of_surjective {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M →ₙ* N} (hf : Function.Surjective f) (S : Subsemigroup N) :
map f (comap f S) = S
theorem AddSubsemigroup.map_comap_eq_of_surjective {M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M →ₙ+ N} (hf : Function.Surjective f) (S : AddSubsemigroup N) :
map f (comap f S) = S
theorem Subsemigroup.map_inf_comap_of_surjective {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M →ₙ* N} (hf : Function.Surjective f) (S T : Subsemigroup N) :
map f (comap f S comap f T) = S T
theorem AddSubsemigroup.map_inf_comap_of_surjective {M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M →ₙ+ N} (hf : Function.Surjective f) (S T : AddSubsemigroup N) :
map f (comap f S comap f T) = S T
theorem Subsemigroup.map_iInf_comap_of_surjective {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {ι : Type u_5} {f : M →ₙ* N} (hf : Function.Surjective f) (S : ιSubsemigroup N) :
map f (⨅ (i : ι), comap f (S i)) = iInf S
theorem AddSubsemigroup.map_iInf_comap_of_surjective {M : Type u_1} {N : Type u_2} [Add M] [Add N] {ι : Type u_5} {f : M →ₙ+ N} (hf : Function.Surjective f) (S : ιAddSubsemigroup N) :
map f (⨅ (i : ι), comap f (S i)) = iInf S
theorem Subsemigroup.map_sup_comap_of_surjective {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M →ₙ* N} (hf : Function.Surjective f) (S T : Subsemigroup N) :
map f (comap f S comap f T) = S T
theorem AddSubsemigroup.map_sup_comap_of_surjective {M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M →ₙ+ N} (hf : Function.Surjective f) (S T : AddSubsemigroup N) :
map f (comap f S comap f T) = S T
theorem Subsemigroup.map_iSup_comap_of_surjective {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {ι : Type u_5} {f : M →ₙ* N} (hf : Function.Surjective f) (S : ιSubsemigroup N) :
map f (⨆ (i : ι), comap f (S i)) = iSup S
theorem AddSubsemigroup.map_iSup_comap_of_surjective {M : Type u_1} {N : Type u_2} [Add M] [Add N] {ι : Type u_5} {f : M →ₙ+ N} (hf : Function.Surjective f) (S : ιAddSubsemigroup N) :
map f (⨆ (i : ι), comap f (S i)) = iSup S
theorem Subsemigroup.comap_le_comap_iff_of_surjective {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M →ₙ* N} (hf : Function.Surjective f) {S T : Subsemigroup N} :
comap f S comap f T S T
theorem AddSubsemigroup.comap_le_comap_iff_of_surjective {M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M →ₙ+ N} (hf : Function.Surjective f) {S T : AddSubsemigroup N} :
comap f S comap f T S T
theorem Subsemigroup.comap_strictMono_of_surjective {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M →ₙ* N} (hf : Function.Surjective f) :
def Subsemigroup.topEquiv {M : Type u_1} [Mul M] :
≃* M

The top subsemigroup is isomorphic to the semigroup.

Equations
  • Subsemigroup.topEquiv = { toFun := fun (x : ) => x, invFun := fun (x : M) => x, , left_inv := , right_inv := , map_mul' := }
def AddSubsemigroup.topEquiv {M : Type u_1} [Add M] :
≃+ M

The top additive subsemigroup is isomorphic to the additive semigroup.

Equations
  • AddSubsemigroup.topEquiv = { toFun := fun (x : ) => x, invFun := fun (x : M) => x, , left_inv := , right_inv := , map_add' := }
@[simp]
theorem Subsemigroup.topEquiv_apply {M : Type u_1} [Mul M] (x : ) :
topEquiv x = x
@[simp]
theorem AddSubsemigroup.topEquiv_symm_apply_coe {M : Type u_1} [Add M] (x : M) :
(topEquiv.symm x) = x
@[simp]
theorem Subsemigroup.topEquiv_symm_apply_coe {M : Type u_1} [Mul M] (x : M) :
(topEquiv.symm x) = x
@[simp]
theorem AddSubsemigroup.topEquiv_apply {M : Type u_1} [Add M] (x : ) :
topEquiv x = x
noncomputable def Subsemigroup.equivMapOfInjective {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (S : Subsemigroup M) (f : M →ₙ* N) (hf : Function.Injective f) :
S ≃* (map f S)

A subsemigroup is isomorphic to its image under an injective function

Equations
noncomputable def AddSubsemigroup.equivMapOfInjective {M : Type u_1} {N : Type u_2} [Add M] [Add N] (S : AddSubsemigroup M) (f : M →ₙ+ N) (hf : Function.Injective f) :
S ≃+ (map f S)

An additive subsemigroup is isomorphic to its image under an injective function

Equations
@[simp]
theorem Subsemigroup.coe_equivMapOfInjective_apply {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (S : Subsemigroup M) (f : M →ₙ* N) (hf : Function.Injective f) (x : S) :
((S.equivMapOfInjective f hf) x) = f x
@[simp]
theorem AddSubsemigroup.coe_equivMapOfInjective_apply {M : Type u_1} {N : Type u_2} [Add M] [Add N] (S : AddSubsemigroup M) (f : M →ₙ+ N) (hf : Function.Injective f) (x : S) :
((S.equivMapOfInjective f hf) x) = f x
def Subsemigroup.prod {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (s : Subsemigroup M) (t : Subsemigroup N) :

Given Subsemigroups s, t of semigroups M, N respectively, s × t as a subsemigroup of M × N.

Equations
  • s.prod t = { carrier := s ×ˢ t, mul_mem' := }
def AddSubsemigroup.prod {M : Type u_1} {N : Type u_2} [Add M] [Add N] (s : AddSubsemigroup M) (t : AddSubsemigroup N) :

Given AddSubsemigroups s, t of AddSemigroups A, B respectively, s × t as an AddSubsemigroup of A × B.

Equations
  • s.prod t = { carrier := s ×ˢ t, add_mem' := }
theorem Subsemigroup.coe_prod {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (s : Subsemigroup M) (t : Subsemigroup N) :
(s.prod t) = s ×ˢ t
theorem AddSubsemigroup.coe_prod {M : Type u_1} {N : Type u_2} [Add M] [Add N] (s : AddSubsemigroup M) (t : AddSubsemigroup N) :
(s.prod t) = s ×ˢ t
theorem Subsemigroup.mem_prod {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {s : Subsemigroup M} {t : Subsemigroup N} {p : M × N} :
p s.prod t p.1 s p.2 t
theorem AddSubsemigroup.mem_prod {M : Type u_1} {N : Type u_2} [Add M] [Add N] {s : AddSubsemigroup M} {t : AddSubsemigroup N} {p : M × N} :
p s.prod t p.1 s p.2 t
theorem Subsemigroup.prod_mono {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {s₁ s₂ : Subsemigroup M} {t₁ t₂ : Subsemigroup N} (hs : s₁ s₂) (ht : t₁ t₂) :
s₁.prod t₁ s₂.prod t₂
theorem AddSubsemigroup.prod_mono {M : Type u_1} {N : Type u_2} [Add M] [Add N] {s₁ s₂ : AddSubsemigroup M} {t₁ t₂ : AddSubsemigroup N} (hs : s₁ s₂) (ht : t₁ t₂) :
s₁.prod t₁ s₂.prod t₂
theorem Subsemigroup.prod_top {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (s : Subsemigroup M) :
theorem AddSubsemigroup.prod_top {M : Type u_1} {N : Type u_2} [Add M] [Add N] (s : AddSubsemigroup M) :
theorem Subsemigroup.top_prod {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (s : Subsemigroup N) :
theorem AddSubsemigroup.top_prod {M : Type u_1} {N : Type u_2} [Add M] [Add N] (s : AddSubsemigroup N) :
@[simp]
theorem Subsemigroup.top_prod_top {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] :
@[simp]
theorem AddSubsemigroup.top_prod_top {M : Type u_1} {N : Type u_2} [Add M] [Add N] :
theorem Subsemigroup.bot_prod_bot {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] :
theorem AddSubsemigroup.bot_prod_bot {M : Type u_1} {N : Type u_2} [Add M] [Add N] :
def Subsemigroup.prodEquiv {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (s : Subsemigroup M) (t : Subsemigroup N) :
(s.prod t) ≃* s × t

The product of subsemigroups is isomorphic to their product as semigroups.

Equations
def AddSubsemigroup.prodEquiv {M : Type u_1} {N : Type u_2} [Add M] [Add N] (s : AddSubsemigroup M) (t : AddSubsemigroup N) :
(s.prod t) ≃+ s × t

The product of additive subsemigroups is isomorphic to their product as additive semigroups

Equations
theorem Subsemigroup.mem_map_equiv {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M ≃* N} {K : Subsemigroup M} {x : N} :
x map (↑f) K f.symm x K
theorem AddSubsemigroup.mem_map_equiv {M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M ≃+ N} {K : AddSubsemigroup M} {x : N} :
x map (↑f) K f.symm x K
theorem Subsemigroup.map_equiv_eq_comap_symm {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M ≃* N) (K : Subsemigroup M) :
map (↑f) K = comap (↑f.symm) K
theorem AddSubsemigroup.map_equiv_eq_comap_symm {M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M ≃+ N) (K : AddSubsemigroup M) :
map (↑f) K = comap (↑f.symm) K
theorem Subsemigroup.comap_equiv_eq_map_symm {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : N ≃* M) (K : Subsemigroup M) :
comap (↑f) K = map (↑f.symm) K
theorem AddSubsemigroup.comap_equiv_eq_map_symm {M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : N ≃+ M) (K : AddSubsemigroup M) :
comap (↑f) K = map (↑f.symm) K
@[simp]
theorem Subsemigroup.map_equiv_top {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M ≃* N) :
map f =
@[simp]
theorem AddSubsemigroup.map_equiv_top {M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M ≃+ N) :
map f =
theorem Subsemigroup.le_prod_iff {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {s : Subsemigroup M} {t : Subsemigroup N} {u : Subsemigroup (M × N)} :
u s.prod t map (MulHom.fst M N) u s map (MulHom.snd M N) u t
theorem AddSubsemigroup.le_prod_iff {M : Type u_1} {N : Type u_2} [Add M] [Add N] {s : AddSubsemigroup M} {t : AddSubsemigroup N} {u : AddSubsemigroup (M × N)} :
u s.prod t map (AddHom.fst M N) u s map (AddHom.snd M N) u t
def MulHom.srange {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M →ₙ* N) :

The range of a semigroup homomorphism is a subsemigroup. See Note [range copy pattern].

Equations
def AddHom.srange {M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M →ₙ+ N) :

The range of an AddHom is an AddSubsemigroup.

Equations
@[simp]
theorem MulHom.coe_srange {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M →ₙ* N) :
f.srange = Set.range f
@[simp]
theorem AddHom.coe_srange {M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M →ₙ+ N) :
f.srange = Set.range f
@[simp]
theorem MulHom.mem_srange {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M →ₙ* N} {y : N} :
y f.srange ∃ (x : M), f x = y
@[simp]
theorem AddHom.mem_srange {M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M →ₙ+ N} {y : N} :
y f.srange ∃ (x : M), f x = y
@[simp]
theorem MulHom.srange_mk {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : MN) (hf : ∀ (x y : M), f (x * y) = f x * f y) :
{ toFun := f, map_mul' := hf }.srange = { carrier := Set.range f, mul_mem' := }
@[simp]
theorem AddHom.srange_mk {M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : MN) (hf : ∀ (x y : M), f (x + y) = f x + f y) :
{ toFun := f, map_add' := hf }.srange = { carrier := Set.range f, add_mem' := }
theorem MulHom.srange_eq_map {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M →ₙ* N) :
theorem AddHom.srange_eq_map {M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M →ₙ+ N) :
theorem MulHom.map_srange {M : Type u_1} {N : Type u_2} {P : Type u_3} [Mul M] [Mul N] [Mul P] (g : N →ₙ* P) (f : M →ₙ* N) :
theorem AddHom.map_srange {M : Type u_1} {N : Type u_2} {P : Type u_3} [Add M] [Add N] [Add P] (g : N →ₙ+ P) (f : M →ₙ+ N) :
theorem MulHom.srange_eq_top_iff_surjective {M : Type u_1} [Mul M] {N : Type u_5} [Mul N] {f : M →ₙ* N} :
theorem AddHom.srange_eq_top_iff_surjective {M : Type u_1} [Add M] {N : Type u_5} [Add N] {f : M →ₙ+ N} :
@[deprecated MulHom.srange_eq_top_iff_surjective (since := "2024-11-11")]
theorem MulHom.srange_top_iff_surjective {M : Type u_1} [Mul M] {N : Type u_5} [Mul N] {f : M →ₙ* N} :

Alias of MulHom.srange_eq_top_iff_surjective.

@[simp]
theorem MulHom.srange_eq_top_of_surjective {M : Type u_1} [Mul M] {N : Type u_5} [Mul N] (f : M →ₙ* N) (hf : Function.Surjective f) :

The range of a surjective semigroup hom is the whole of the codomain.

@[simp]
theorem AddHom.srange_eq_top_of_surjective {M : Type u_1} [Add M] {N : Type u_5} [Add N] (f : M →ₙ+ N) (hf : Function.Surjective f) :

The range of a surjective AddSemigroup hom is the whole of the codomain.

@[deprecated MulHom.srange_eq_top_of_surjective (since := "2024-11-11")]
theorem MulHom.srange_top_of_surjective {M : Type u_1} [Mul M] {N : Type u_5} [Mul N] (f : M →ₙ* N) (hf : Function.Surjective f) :

Alias of MulHom.srange_eq_top_of_surjective.


The range of a surjective semigroup hom is the whole of the codomain.

theorem MulHom.map_mclosure {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M →ₙ* N) (s : Set M) :

The image under a semigroup hom of the subsemigroup generated by a set equals the subsemigroup generated by the image of the set.

theorem AddHom.map_mclosure {M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M →ₙ+ N) (s : Set M) :

The image under an AddSemigroup hom of the AddSubsemigroup generated by a set equals the AddSubsemigroup generated by the image of the set.

def MulHom.restrict {M : Type u_1} {σ : Type u_4} [Mul M] {N : Type u_5} [Mul N] [SetLike σ M] [MulMemClass σ M] (f : M →ₙ* N) (S : σ) :
S →ₙ* N

Restriction of a semigroup hom to a subsemigroup of the domain.

Equations
def AddHom.restrict {M : Type u_1} {σ : Type u_4} [Add M] {N : Type u_5} [Add N] [SetLike σ M] [AddMemClass σ M] (f : M →ₙ+ N) (S : σ) :
S →ₙ+ N

Restriction of an AddSemigroup hom to an AddSubsemigroup of the domain.

Equations
@[simp]
theorem MulHom.restrict_apply {M : Type u_1} {σ : Type u_4} [Mul M] {N : Type u_5} [Mul N] [SetLike σ M] [MulMemClass σ M] (f : M →ₙ* N) {S : σ} (x : S) :
(f.restrict S) x = f x
@[simp]
theorem AddHom.restrict_apply {M : Type u_1} {σ : Type u_4} [Add M] {N : Type u_5} [Add N] [SetLike σ M] [AddMemClass σ M] (f : M →ₙ+ N) {S : σ} (x : S) :
(f.restrict S) x = f x
def MulHom.codRestrict {M : Type u_1} {N : Type u_2} {σ : Type u_4} [Mul M] [Mul N] [SetLike σ N] [MulMemClass σ N] (f : M →ₙ* N) (S : σ) (h : ∀ (x : M), f x S) :
M →ₙ* S

Restriction of a semigroup hom to a subsemigroup of the codomain.

Equations
  • f.codRestrict S h = { toFun := fun (n : M) => f n, , map_mul' := }
def AddHom.codRestrict {M : Type u_1} {N : Type u_2} {σ : Type u_4} [Add M] [Add N] [SetLike σ N] [AddMemClass σ N] (f : M →ₙ+ N) (S : σ) (h : ∀ (x : M), f x S) :
M →ₙ+ S

Restriction of an AddSemigroup hom to an AddSubsemigroup of the codomain.

Equations
  • f.codRestrict S h = { toFun := fun (n : M) => f n, , map_add' := }
@[simp]
theorem MulHom.codRestrict_apply_coe {M : Type u_1} {N : Type u_2} {σ : Type u_4} [Mul M] [Mul N] [SetLike σ N] [MulMemClass σ N] (f : M →ₙ* N) (S : σ) (h : ∀ (x : M), f x S) (n : M) :
((f.codRestrict S h) n) = f n
@[simp]
theorem AddHom.codRestrict_apply_coe {M : Type u_1} {N : Type u_2} {σ : Type u_4} [Add M] [Add N] [SetLike σ N] [AddMemClass σ N] (f : M →ₙ+ N) (S : σ) (h : ∀ (x : M), f x S) (n : M) :
((f.codRestrict S h) n) = f n
def MulHom.srangeRestrict {M : Type u_1} [Mul M] {N : Type u_5} [Mul N] (f : M →ₙ* N) :

Restriction of a semigroup hom to its range interpreted as a subsemigroup.

Equations
def AddHom.srangeRestrict {M : Type u_1} [Add M] {N : Type u_5} [Add N] (f : M →ₙ+ N) :

Restriction of an AddSemigroup hom to its range interpreted as a subsemigroup.

Equations
@[simp]
theorem MulHom.coe_srangeRestrict {M : Type u_1} [Mul M] {N : Type u_5} [Mul N] (f : M →ₙ* N) (x : M) :
(f.srangeRestrict x) = f x
@[simp]
theorem AddHom.coe_srangeRestrict {M : Type u_1} [Add M] {N : Type u_5} [Add N] (f : M →ₙ+ N) (x : M) :
(f.srangeRestrict x) = f x
theorem MulHom.prod_map_comap_prod' {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {M' : Type u_5} {N' : Type u_6} [Mul M'] [Mul N'] (f : M →ₙ* N) (g : M' →ₙ* N') (S : Subsemigroup N) (S' : Subsemigroup N') :
theorem AddHom.prod_map_comap_prod' {M : Type u_1} {N : Type u_2} [Add M] [Add N] {M' : Type u_5} {N' : Type u_6} [Add M'] [Add N'] (f : M →ₙ+ N) (g : M' →ₙ+ N') (S : AddSubsemigroup N) (S' : AddSubsemigroup N') :
def MulHom.subsemigroupComap {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M →ₙ* N) (N' : Subsemigroup N) :
(Subsemigroup.comap f N') →ₙ* N'

The MulHom from the preimage of a subsemigroup to itself.

Equations
def AddHom.subsemigroupComap {M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M →ₙ+ N) (N' : AddSubsemigroup N) :

The AddHom from the preimage of an additive subsemigroup to itself.

Equations
@[simp]
theorem AddHom.subsemigroupComap_apply_coe {M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M →ₙ+ N) (N' : AddSubsemigroup N) (x : (AddSubsemigroup.comap f N')) :
((f.subsemigroupComap N') x) = f x
@[simp]
theorem MulHom.subsemigroupComap_apply_coe {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M →ₙ* N) (N' : Subsemigroup N) (x : (Subsemigroup.comap f N')) :
((f.subsemigroupComap N') x) = f x
def MulHom.subsemigroupMap {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M →ₙ* N) (M' : Subsemigroup M) :
M' →ₙ* (Subsemigroup.map f M')

The MulHom from a subsemigroup to its image. See MulEquiv.subsemigroupMap for a variant for MulEquivs.

Equations
  • f.subsemigroupMap M' = { toFun := fun (x : M') => f x, , map_mul' := }
def AddHom.subsemigroupMap {M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M →ₙ+ N) (M' : AddSubsemigroup M) :

the AddHom from an additive subsemigroup to its image. See AddEquiv.addSubsemigroupMap for a variant for AddEquivs.

Equations
  • f.subsemigroupMap M' = { toFun := fun (x : M') => f x, , map_add' := }
@[simp]
theorem AddHom.subsemigroupMap_apply_coe {M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M →ₙ+ N) (M' : AddSubsemigroup M) (x : M') :
((f.subsemigroupMap M') x) = f x
@[simp]
theorem MulHom.subsemigroupMap_apply_coe {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M →ₙ* N) (M' : Subsemigroup M) (x : M') :
((f.subsemigroupMap M') x) = f x
theorem MulHom.subsemigroupMap_surjective {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M →ₙ* N) (M' : Subsemigroup M) :
theorem AddHom.subsemigroupMap_surjective {M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M →ₙ+ N) (M' : AddSubsemigroup M) :
@[simp]
theorem Subsemigroup.srange_fst {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] [Nonempty N] :
@[simp]
theorem AddSubsemigroup.srange_fst {M : Type u_1} {N : Type u_2} [Add M] [Add N] [Nonempty N] :
@[simp]
theorem Subsemigroup.srange_snd {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] [Nonempty M] :
@[simp]
theorem AddSubsemigroup.srange_snd {M : Type u_1} {N : Type u_2} [Add M] [Add N] [Nonempty M] :
theorem Subsemigroup.prod_eq_top_iff {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] [Nonempty M] [Nonempty N] {s : Subsemigroup M} {t : Subsemigroup N} :
s.prod t = s = t =
theorem AddSubsemigroup.prod_eq_top_iff {M : Type u_1} {N : Type u_2} [Add M] [Add N] [Nonempty M] [Nonempty N] {s : AddSubsemigroup M} {t : AddSubsemigroup N} :
s.prod t = s = t =
def Subsemigroup.inclusion {M : Type u_1} [Mul M] {S T : Subsemigroup M} (h : S T) :
S →ₙ* T

The semigroup hom associated to an inclusion of subsemigroups.

Equations
def AddSubsemigroup.inclusion {M : Type u_1} [Add M] {S T : AddSubsemigroup M} (h : S T) :
S →ₙ+ T

The AddSemigroup hom associated to an inclusion of subsemigroups.

Equations
theorem Subsemigroup.eq_top_iff' {M : Type u_1} [Mul M] (S : Subsemigroup M) :
S = ∀ (x : M), x S
theorem AddSubsemigroup.eq_top_iff' {M : Type u_1} [Add M] (S : AddSubsemigroup M) :
S = ∀ (x : M), x S
def MulEquiv.subsemigroupCongr {M : Type u_1} [Mul M] {S T : Subsemigroup M} (h : S = T) :
S ≃* T

Makes the identity isomorphism from a proof that two subsemigroups of a multiplicative semigroup are equal.

Equations
def AddEquiv.subsemigroupCongr {M : Type u_1} [Add M] {S T : AddSubsemigroup M} (h : S = T) :
S ≃+ T

Makes the identity additive isomorphism from a proof two subsemigroups of an additive semigroup are equal.

Equations
def MulEquiv.ofLeftInverse {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M →ₙ* N) {g : NM} (h : Function.LeftInverse g f) :
M ≃* f.srange

A semigroup homomorphism f : M →ₙ* N with a left-inverse g : N → M defines a multiplicative equivalence between M and f.srange.

This is a bidirectional version of MulHom.srangeRestrict.

Equations
def AddEquiv.ofLeftInverse {M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M →ₙ+ N) {g : NM} (h : Function.LeftInverse g f) :
M ≃+ f.srange

An additive semigroup homomorphism f : M →+ N with a left-inverse g : N → M defines an additive equivalence between M and f.srange. This is a bidirectional version of AddHom.srangeRestrict.

Equations
@[simp]
theorem AddEquiv.ofLeftInverse_apply {M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M →ₙ+ N) {g : NM} (h : Function.LeftInverse g f) (a : M) :
@[simp]
theorem MulEquiv.ofLeftInverse_symm_apply {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M →ₙ* N) {g : NM} (h : Function.LeftInverse g f) (a✝ : f.srange) :
(ofLeftInverse f h).symm a✝ = g a✝
@[simp]
theorem AddEquiv.ofLeftInverse_symm_apply {M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M →ₙ+ N) {g : NM} (h : Function.LeftInverse g f) (a✝ : f.srange) :
(ofLeftInverse f h).symm a✝ = g a✝
@[simp]
theorem MulEquiv.ofLeftInverse_apply {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M →ₙ* N) {g : NM} (h : Function.LeftInverse g f) (a : M) :
def MulEquiv.subsemigroupMap {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (e : M ≃* N) (S : Subsemigroup M) :
S ≃* (Subsemigroup.map (↑e) S)

A MulEquiv φ between two semigroups M and N induces a MulEquiv between a subsemigroup S ≤ M and the subsemigroup φ(S) ≤ N. See MulHom.subsemigroupMap for a variant for MulHoms.

Equations
  • e.subsemigroupMap S = { toFun := fun (x : S) => e x, , invFun := fun (x : (Subsemigroup.map (↑e) S)) => e.symm x, , left_inv := , right_inv := , map_mul' := }
def AddEquiv.subsemigroupMap {M : Type u_1} {N : Type u_2} [Add M] [Add N] (e : M ≃+ N) (S : AddSubsemigroup M) :
S ≃+ (AddSubsemigroup.map (↑e) S)

An AddEquiv φ between two additive semigroups M and N induces an AddEquiv between a subsemigroup S ≤ M and the subsemigroup φ(S) ≤ N. See AddHom.addSubsemigroupMap for a variant for AddHoms.

Equations
  • e.subsemigroupMap S = { toFun := fun (x : S) => e x, , invFun := fun (x : (AddSubsemigroup.map (↑e) S)) => e.symm x, , left_inv := , right_inv := , map_add' := }
@[simp]
theorem AddEquiv.subsemigroupMap_symm_apply_coe {M : Type u_1} {N : Type u_2} [Add M] [Add N] (e : M ≃+ N) (S : AddSubsemigroup M) (x : (AddSubsemigroup.map (↑e) S)) :
((e.subsemigroupMap S).symm x) = e.symm x
@[simp]
theorem AddEquiv.subsemigroupMap_apply_coe {M : Type u_1} {N : Type u_2} [Add M] [Add N] (e : M ≃+ N) (S : AddSubsemigroup M) (x : S) :
((e.subsemigroupMap S) x) = e x
@[simp]
theorem MulEquiv.subsemigroupMap_symm_apply_coe {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (e : M ≃* N) (S : Subsemigroup M) (x : (Subsemigroup.map (↑e) S)) :
((e.subsemigroupMap S).symm x) = e.symm x
@[simp]
theorem MulEquiv.subsemigroupMap_apply_coe {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (e : M ≃* N) (S : Subsemigroup M) (x : S) :
((e.subsemigroupMap S) x) = e x
theorem Subsemigroup.map_comap_eq {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M →ₙ* N) (S : Subsemigroup N) :
map f (comap f S) = S f.srange
theorem AddSubsemigroup.map_comap_eq {M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M →ₙ+ N) (S : AddSubsemigroup N) :
map f (comap f S) = S f.srange
theorem Subsemigroup.map_comap_eq_self {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M →ₙ* N} {S : Subsemigroup N} (h : S f.srange) :
map f (comap f S) = S
theorem AddSubsemigroup.map_comap_eq_self {M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M →ₙ+ N} {S : AddSubsemigroup N} (h : S f.srange) :
map f (comap f S) = S