Documentation

Mathlib.GroupTheory.Subgroup.Center

Centers of subgroups #

def Subgroup.center (G : Type u_1) [Group G] :

The center of a group G is the set of elements that commute with everything in G

Equations
Instances For

The center of an additive group G is the set of elements that commute with everything in G

Equations
Instances For
theorem Subgroup.coe_center (G : Type u_1) [Group G] :
def Subgroup.centerCongr {G : Type u_1} [Group G] {H : Type u_2} [Group H] (e : G ≃* H) :
(center G) ≃* (center H)

The center of isomorphic groups are isomorphic.

Equations
def AddSubgroup.centerCongr {G : Type u_1} [AddGroup G] {H : Type u_2} [AddGroup H] (e : G ≃+ H) :
(center G) ≃+ (center H)

The center of isomorphic additive groups are isomorphic.

Equations
@[simp]
theorem Subgroup.centerCongr_symm_apply_coe {G : Type u_1} [Group G] {H : Type u_2} [Group H] (e : G ≃* H) (s : (Subsemigroup.center H)) :
((centerCongr e).symm s) = e.symm s
@[simp]
theorem AddSubgroup.centerCongr_apply_coe {G : Type u_1} [AddGroup G] {H : Type u_2} [AddGroup H] (e : G ≃+ H) (r : (AddSubsemigroup.center G)) :
((centerCongr e) r) = e r
@[simp]
theorem Subgroup.centerCongr_apply_coe {G : Type u_1} [Group G] {H : Type u_2} [Group H] (e : G ≃* H) (r : (Subsemigroup.center G)) :
((centerCongr e) r) = e r
@[simp]
theorem AddSubgroup.centerCongr_symm_apply_coe {G : Type u_1} [AddGroup G] {H : Type u_2} [AddGroup H] (e : G ≃+ H) (s : (AddSubsemigroup.center H)) :
((centerCongr e).symm s) = e.symm s

The center of a group is isomorphic to the center of its opposite.

Equations

The center of an additive group is isomorphic to the center of its opposite.

Equations
theorem Subgroup.mem_center_iff {G : Type u_1} [Group G] {z : G} :
z center G ∀ (g : G), g * z = z * g
theorem AddSubgroup.mem_center_iff {G : Type u_1} [AddGroup G] {z : G} :
z center G ∀ (g : G), g + z = z + g
instance Subgroup.decidableMemCenter {G : Type u_1} [Group G] (z : G) [Decidable (∀ (g : G), g * z = z * g)] :
Equations

A group is commutative if the center is the whole group

Equations
theorem IsConj.eq_of_left_mem_center {M : Type u_2} [Monoid M] {g h : M} (H : IsConj g h) (Hg : g Set.center M) :
g = h
theorem IsConj.eq_of_right_mem_center {M : Type u_2} [Monoid M] {g h : M} (H : IsConj g h) (Hh : h Set.center M) :
g = h