Documentation

Mathlib.GroupTheory.Subgroup.Centralizer

Centralizers of subgroups #

def Subgroup.centralizer {G : Type u_1} [Group G] (s : Set G) :

The centralizer of s is the subgroup of g : G commuting with every h : s.

Equations
Instances For
def AddSubgroup.centralizer {G : Type u_1} [AddGroup G] (s : Set G) :

The centralizer of s is the additive subgroup of g : G commuting with every h : s.

Equations
Instances For
theorem Subgroup.mem_centralizer_iff {G : Type u_1} [Group G] {g : G} {s : Set G} :
g centralizer s hs, h * g = g * h
theorem AddSubgroup.mem_centralizer_iff {G : Type u_1} [AddGroup G] {g : G} {s : Set G} :
g centralizer s hs, h + g = g + h
theorem Subgroup.mem_centralizer_iff_commutator_eq_one {G : Type u_1} [Group G] {g : G} {s : Set G} :
g centralizer s hs, h * g * h⁻¹ * g⁻¹ = 1
theorem AddSubgroup.mem_centralizer_iff_commutator_eq_zero {G : Type u_1} [AddGroup G] {g : G} {s : Set G} :
g centralizer s hs, h + g + -h + -g = 0
theorem Subgroup.mem_centralizer_singleton_iff {G : Type u_1} [Group G] {g k : G} :
k centralizer {g} k * g = g * k
theorem Subgroup.le_centralizer_iff {G : Type u_1} [Group G] {H K : Subgroup G} :
theorem Subgroup.centralizer_le {G : Type u_1} [Group G] {s t : Set G} (h : s t) :
theorem AddSubgroup.centralizer_le {G : Type u_1} [AddGroup G] {s t : Set G} (h : s t) :
@[simp]
theorem Subgroup.map_centralizer_le_centralizer_image {G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (s : Set G) (f : G →* G') :
theorem AddSubgroup.map_centralizer_le_centralizer_image {G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (s : Set G) (f : G →+ G') :
theorem Subgroup.le_centralizer {G : Type u_1} [Group G] (H : Subgroup G) [h : H.IsCommutative] :
@[reducible, inline]
abbrev Subgroup.closureCommGroupOfComm {G : Type u_1} [Group G] {k : Set G} (hcomm : xk, yk, x * y = y * x) :

If all the elements of a set s commute, then closure s is a commutative group.

Equations
@[reducible, inline]
abbrev AddSubgroup.closureAddCommGroupOfComm {G : Type u_1} [AddGroup G] {k : Set G} (hcomm : xk, yk, x + y = y + x) :

If all the elements of a set s commute, then closure s is an additive commutative group.

Equations
@[simp]
theorem Subgroup.instMulDistribMulActionSubtypeMemNormalizer_smul_coe {G : Type u_1} [Group G] (H : Subgroup G) (g : H.normalizer) (h : H) :
(SMul.smul g h) = g * h * g⁻¹

The homomorphism N(H) → Aut(H) with kernel C(H).

Equations
@[simp]
theorem Subgroup.normalizerMonoidHom_apply_symm_apply_coe {G : Type u_1} [Group G] (H : Subgroup G) (x : H.normalizer) (a✝ : H) :
((MulEquiv.symm (H.normalizerMonoidHom x)) a✝) = (↑x)⁻¹ * a✝ * x
@[simp]
theorem Subgroup.normalizerMonoidHom_apply_apply_coe {G : Type u_1} [Group G] (H : Subgroup G) (x : H.normalizer) (a✝ : H) :
((H.normalizerMonoidHom x) a✝) = x * a✝ * (↑x)⁻¹