Documentation

Mathlib.GroupTheory.Sylow

Sylow theorems #

The Sylow theorems are the following results for every finite group G and every prime number p.

Main definitions #

Main statements #

structure Sylow (p : ) (G : Type u_1) [Group G] extends Subgroup , Submonoid , Subsemigroup :
Type u_1

A Sylow p-subgroup is a maximal p-subgroup.

    Instances For
      theorem Sylow.isPGroup' {p : } {G : Type u_1} [Group G] (self : Sylow p G) :
      IsPGroup p self
      theorem Sylow.is_maximal' {p : } {G : Type u_1} [Group G] (self : Sylow p G) {Q : Subgroup G} :
      IsPGroup p Qself QQ = self
      instance Sylow.instCoeOutSubgroup {p : } {G : Type u_1} [Group G] :
      Equations
      • Sylow.instCoeOutSubgroup = { coe := Sylow.toSubgroup }
      theorem Sylow.ext {p : } {G : Type u_1} [Group G] {P : Sylow p G} {Q : Sylow p G} (h : P = Q) :
      P = Q
      instance Sylow.instSetLike {p : } {G : Type u_1} [Group G] :
      SetLike (Sylow p G) G
      Equations
      • Sylow.instSetLike = { coe := fun (x : Sylow p G) => x, coe_injective' := }
      instance Sylow.instSubgroupClass {p : } {G : Type u_1} [Group G] :
      Equations
      • =
      def IsPGroup.toSylow {p : } {G : Type u_1} [Group G] [Fact (Nat.Prime p)] {P : Subgroup G} (hP1 : IsPGroup p P) (hP2 : ¬p P.index) :
      Sylow p G

      A p-subgroup with index indivisible by p is a Sylow subgroup.

      Equations
      • hP1.toSylow hP2 = { toSubgroup := P, isPGroup' := hP1, is_maximal' := }
      Instances For
        @[simp]
        theorem IsPGroup.toSylow_coe {p : } {G : Type u_1} [Group G] [Fact (Nat.Prime p)] {P : Subgroup G} (hP1 : IsPGroup p P) (hP2 : ¬p P.index) :
        (hP1.toSylow hP2) = P
        @[simp]
        theorem IsPGroup.mem_toSylow {p : } {G : Type u_1} [Group G] [Fact (Nat.Prime p)] {P : Subgroup G} (hP1 : IsPGroup p P) (hP2 : ¬p P.index) {g : G} :
        g hP1.toSylow hP2 g P
        def Sylow.ofCard {G : Type u_1} [Group G] [Finite G] {p : } [Fact (Nat.Prime p)] (H : Subgroup G) (card_eq : Nat.card H = p ^ (Nat.card G).factorization p) :
        Sylow p G

        A subgroup with cardinality p ^ n is a Sylow subgroup where n is the multiplicity of p in the group order.

        Equations
        Instances For
          @[simp]
          theorem Sylow.coe_ofCard {G : Type u_1} [Group G] [Finite G] {p : } [Fact (Nat.Prime p)] (H : Subgroup G) (card_eq : Nat.card H = p ^ (Nat.card G).factorization p) :
          (Sylow.ofCard H card_eq) = H
          def Sylow.comapOfKerIsPGroup {p : } {G : Type u_1} [Group G] (P : Sylow p G) {K : Type u_2} [Group K] (ϕ : K →* G) (hϕ : IsPGroup p ϕ.ker) (h : P ϕ.range) :
          Sylow p K

          The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup.

          Equations
          • P.comapOfKerIsPGroup ϕ h = { toSubgroup := Subgroup.comap ϕ P, isPGroup' := , is_maximal' := }
          Instances For
            @[simp]
            theorem Sylow.coe_comapOfKerIsPGroup {p : } {G : Type u_1} [Group G] (P : Sylow p G) {K : Type u_2} [Group K] (ϕ : K →* G) (hϕ : IsPGroup p ϕ.ker) (h : P ϕ.range) :
            (P.comapOfKerIsPGroup ϕ h) = Subgroup.comap ϕ P
            def Sylow.comapOfInjective {p : } {G : Type u_1} [Group G] (P : Sylow p G) {K : Type u_2} [Group K] (ϕ : K →* G) (hϕ : Function.Injective ϕ) (h : P ϕ.range) :
            Sylow p K

            The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup.

            Equations
            • P.comapOfInjective ϕ h = P.comapOfKerIsPGroup ϕ h
            Instances For
              @[simp]
              theorem Sylow.coe_comapOfInjective {p : } {G : Type u_1} [Group G] (P : Sylow p G) {K : Type u_2} [Group K] (ϕ : K →* G) (hϕ : Function.Injective ϕ) (h : P ϕ.range) :
              (P.comapOfInjective ϕ h) = Subgroup.comap ϕ P
              def Sylow.subtype {p : } {G : Type u_1} [Group G] (P : Sylow p G) {N : Subgroup G} (h : P N) :
              Sylow p N

              A sylow subgroup of G is also a sylow subgroup of a subgroup of G.

              Equations
              • P.subtype h = P.comapOfInjective N.subtype
              Instances For
                @[simp]
                theorem Sylow.coe_subtype {p : } {G : Type u_1} [Group G] (P : Sylow p G) {N : Subgroup G} (h : P N) :
                (P.subtype h) = (↑P).subgroupOf N
                theorem Sylow.subtype_injective {p : } {G : Type u_1} [Group G] {N : Subgroup G} {P : Sylow p G} {Q : Sylow p G} {hP : P N} {hQ : Q N} (h : P.subtype hP = Q.subtype hQ) :
                P = Q
                theorem IsPGroup.exists_le_sylow {p : } {G : Type u_1} [Group G] {P : Subgroup G} (hP : IsPGroup p P) :
                ∃ (Q : Sylow p G), P Q

                A generalization of Sylow's first theorem. Every p-subgroup is contained in a Sylow p-subgroup.

                instance Sylow.nonempty {p : } {G : Type u_1} [Group G] :
                Equations
                • =
                noncomputable instance Sylow.inhabited {p : } {G : Type u_1} [Group G] :
                Equations
                theorem Sylow.exists_comap_eq_of_ker_isPGroup {p : } {G : Type u_1} [Group G] {H : Type u_2} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) :
                ∃ (Q : Sylow p G), Subgroup.comap f Q = P
                theorem Sylow.exists_comap_eq_of_injective {p : } {G : Type u_1} [Group G] {H : Type u_2} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) :
                ∃ (Q : Sylow p G), Subgroup.comap f Q = P
                theorem Sylow.exists_comap_subtype_eq {p : } {G : Type u_1} [Group G] {H : Subgroup G} (P : Sylow p H) :
                ∃ (Q : Sylow p G), Subgroup.comap H.subtype Q = P
                theorem Sylow.finite_of_ker_is_pGroup {p : } {G : Type u_1} [Group G] {H : Type u_2} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Finite (Sylow p G)] :

                If the kernel of f : H →* G is a p-group, then Finite (Sylow p G) implies Finite (Sylow p H).

                theorem Sylow.finite_of_injective {p : } {G : Type u_1} [Group G] {H : Type u_2} [Group H] {f : H →* G} (hf : Function.Injective f) [Finite (Sylow p G)] :

                If f : H →* G is injective, then Finite (Sylow p G) implies Finite (Sylow p H).

                instance Sylow.instFiniteSubtypeMemSubgroup {p : } {G : Type u_1} [Group G] (H : Subgroup G) [Finite (Sylow p G)] :
                Finite (Sylow p H)

                If H is a subgroup of G, then Finite (Sylow p G) implies Finite (Sylow p H).

                Equations
                • =
                instance Sylow.pointwiseMulAction {p : } {G : Type u_1} [Group G] {α : Type u_2} [Group α] [MulDistribMulAction α G] :
                MulAction α (Sylow p G)

                Subgroup.pointwiseMulAction preserves Sylow subgroups.

                Equations
                theorem Sylow.pointwise_smul_def {p : } {G : Type u_1} [Group G] {α : Type u_2} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} :
                (g P) = g P
                instance Sylow.mulAction {p : } {G : Type u_1} [Group G] :
                Equations
                theorem Sylow.smul_def {p : } {G : Type u_1} [Group G] {g : G} {P : Sylow p G} :
                g P = MulAut.conj g P
                theorem Sylow.coe_subgroup_smul {p : } {G : Type u_1} [Group G] {g : G} {P : Sylow p G} :
                (g P) = MulAut.conj g P
                theorem Sylow.coe_smul {p : } {G : Type u_1} [Group G] {g : G} {P : Sylow p G} :
                (g P) = MulAut.conj g P
                theorem Sylow.smul_le {p : } {G : Type u_1} [Group G] {P : Sylow p G} {H : Subgroup G} (hP : P H) (h : H) :
                (h P) H
                theorem Sylow.smul_subtype {p : } {G : Type u_1} [Group G] {P : Sylow p G} {H : Subgroup G} (hP : P H) (h : H) :
                h P.subtype hP = (h P).subtype
                theorem Sylow.smul_eq_iff_mem_normalizer {p : } {G : Type u_1} [Group G] {g : G} {P : Sylow p G} :
                g P = P g (↑P).normalizer
                theorem Sylow.smul_eq_of_normal {p : } {G : Type u_1} [Group G] {g : G} {P : Sylow p G} [h : (↑P).Normal] :
                g P = P
                theorem Subgroup.sylow_mem_fixedPoints_iff {p : } {G : Type u_1} [Group G] (H : Subgroup G) {P : Sylow p G} :
                P MulAction.fixedPoints (↥H) (Sylow p G) H (↑P).normalizer
                theorem IsPGroup.inf_normalizer_sylow {p : } {G : Type u_1} [Group G] {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) :
                P (↑Q).normalizer = P Q
                theorem IsPGroup.sylow_mem_fixedPoints_iff {p : } {G : Type u_1} [Group G] {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} :
                Q MulAction.fixedPoints (↥P) (Sylow p G) P Q

                A generalization of Sylow's second theorem. If the number of Sylow p-subgroups is finite, then all Sylow p-subgroups are conjugate.

                Equations
                • =
                theorem card_sylow_modEq_one (p : ) (G : Type u_1) [Group G] [Fact (Nat.Prime p)] [Finite (Sylow p G)] :

                A generalization of Sylow's third theorem. If the number of Sylow p-subgroups is finite, then it is congruent to 1 modulo p.

                theorem not_dvd_card_sylow (p : ) (G : Type u_1) [Group G] [hp : Fact (Nat.Prime p)] [Finite (Sylow p G)] :
                def Sylow.equivSMul {p : } {G : Type u_1} [Group G] (P : Sylow p G) (g : G) :
                P ≃* (g P)

                Sylow subgroups are isomorphic

                Equations
                Instances For
                  noncomputable def Sylow.equiv {p : } {G : Type u_1} [Group G] [Fact (Nat.Prime p)] [Finite (Sylow p G)] (P : Sylow p G) (Q : Sylow p G) :
                  P ≃* Q

                  Sylow subgroups are isomorphic

                  Equations
                  Instances For
                    @[simp]
                    theorem Sylow.orbit_eq_top {p : } {G : Type u_1} [Group G] [Fact (Nat.Prime p)] [Finite (Sylow p G)] (P : Sylow p G) :
                    theorem Sylow.stabilizer_eq_normalizer {p : } {G : Type u_1} [Group G] (P : Sylow p G) :
                    MulAction.stabilizer G P = (↑P).normalizer
                    theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer {p : } {G : Type u_1} [Group G] [Fact (Nat.Prime p)] [Finite (Sylow p G)] (P : Sylow p G) (x : G) (g : G) (hx : x Subgroup.centralizer P) (hy : g⁻¹ * x * g Subgroup.centralizer P) :
                    n(↑P).normalizer, g⁻¹ * x * g = n⁻¹ * x * n
                    theorem Sylow.conj_eq_normalizer_conj_of_mem {p : } {G : Type u_1} [Group G] [Fact (Nat.Prime p)] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (↑P).IsCommutative] (x : G) (g : G) (hx : x P) (hy : g⁻¹ * x * g P) :
                    n(↑P).normalizer, g⁻¹ * x * g = n⁻¹ * x * n
                    noncomputable def Sylow.equivQuotientNormalizer {p : } {G : Type u_1} [Group G] [Fact (Nat.Prime p)] [Finite (Sylow p G)] (P : Sylow p G) :
                    Sylow p G G (↑P).normalizer

                    Sylow p-subgroups are in bijection with cosets of the normalizer of a Sylow p-subgroup

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      instance Sylow.instFiniteQuotientSubgroupNormalizerOfFactPrime {p : } {G : Type u_1} [Group G] [Fact (Nat.Prime p)] [Finite (Sylow p G)] (P : Sylow p G) :
                      Finite (G (↑P).normalizer)
                      Equations
                      • =
                      theorem Sylow.card_eq_card_quotient_normalizer {p : } {G : Type u_1} [Group G] [Fact (Nat.Prime p)] [Finite (Sylow p G)] (P : Sylow p G) :
                      Nat.card (Sylow p G) = Nat.card (G (↑P).normalizer)
                      @[deprecated Sylow.card_eq_card_quotient_normalizer]
                      theorem card_sylow_eq_card_quotient_normalizer {p : } {G : Type u_1} [Group G] [Fact (Nat.Prime p)] [Finite (Sylow p G)] (P : Sylow p G) :
                      Nat.card (Sylow p G) = Nat.card (G (↑P).normalizer)

                      Alias of Sylow.card_eq_card_quotient_normalizer.

                      theorem Sylow.card_eq_index_normalizer {p : } {G : Type u_1} [Group G] [Fact (Nat.Prime p)] [Finite (Sylow p G)] (P : Sylow p G) :
                      Nat.card (Sylow p G) = (↑P).normalizer.index
                      @[deprecated Sylow.card_eq_index_normalizer]
                      theorem card_sylow_eq_index_normalizer {p : } {G : Type u_1} [Group G] [Fact (Nat.Prime p)] [Finite (Sylow p G)] (P : Sylow p G) :
                      Nat.card (Sylow p G) = (↑P).normalizer.index

                      Alias of Sylow.card_eq_index_normalizer.

                      theorem Sylow.card_dvd_index {p : } {G : Type u_1} [Group G] [Fact (Nat.Prime p)] [Finite (Sylow p G)] (P : Sylow p G) :
                      Nat.card (Sylow p G) (↑P).index
                      @[deprecated Sylow.card_dvd_index]
                      theorem card_sylow_dvd_index {p : } {G : Type u_1} [Group G] [Fact (Nat.Prime p)] [Finite (Sylow p G)] (P : Sylow p G) :
                      Nat.card (Sylow p G) (↑P).index

                      Alias of Sylow.card_dvd_index.

                      theorem Sylow.not_dvd_index' {p : } {G : Type u_1} [Group G] [hp : Fact (Nat.Prime p)] [Finite (Sylow p G)] (P : Sylow p G) (hP : (↑P).relindex (↑P).normalizer 0) :
                      ¬p (↑P).index

                      A Sylow p-subgroup has index indivisible by p, assuming [N(P) : P] < ∞.

                      @[deprecated Sylow.not_dvd_index']
                      theorem not_dvd_index_sylow {p : } {G : Type u_1} [Group G] [hp : Fact (Nat.Prime p)] [Finite (Sylow p G)] (P : Sylow p G) (hP : (↑P).relindex (↑P).normalizer 0) :
                      ¬p (↑P).index

                      Alias of Sylow.not_dvd_index'.


                      A Sylow p-subgroup has index indivisible by p, assuming [N(P) : P] < ∞.

                      theorem Sylow.not_dvd_index {p : } {G : Type u_1} [Group G] [Fact (Nat.Prime p)] [Finite (Sylow p G)] (P : Sylow p G) [(↑P).FiniteIndex] :
                      ¬p (↑P).index

                      A Sylow p-subgroup has index indivisible by p.

                      @[deprecated Sylow.not_dvd_index]
                      theorem not_dvd_index_sylow' {p : } {G : Type u_1} [Group G] [Fact (Nat.Prime p)] [Finite (Sylow p G)] (P : Sylow p G) [(↑P).FiniteIndex] :
                      ¬p (↑P).index

                      Alias of Sylow.not_dvd_index.


                      A Sylow p-subgroup has index indivisible by p.

                      theorem Sylow.normalizer_sup_eq_top {G : Type u_1} [Group G] {p : } [Fact (Nat.Prime p)] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) :
                      (Subgroup.map N.subtype P).normalizer N =

                      Frattini's Argument: If N is a normal subgroup of G, and if P is a Sylow p-subgroup of N, then N_G(P) ⊔ N = G.

                      theorem Sylow.normalizer_sup_eq_top' {G : Type u_1} [Group G] {p : } [Fact (Nat.Prime p)] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : P N) :
                      (↑P).normalizer N =

                      Frattini's Argument: If N is a normal subgroup of G, and if P is a Sylow p-subgroup of N, then N_G(P) ⊔ N = G.

                      theorem QuotientGroup.card_preimage_mk {G : Type u} [Group G] (s : Subgroup G) (t : Set (G s)) :
                      Nat.card (QuotientGroup.mk ⁻¹' t) = Nat.card s * Nat.card t
                      theorem Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {G : Type u} [Group G] {H : Subgroup G} [Finite H] {x : G} :
                      x MulAction.fixedPoints (↥H) (G H) x H.normalizer
                      def Sylow.fixedPointsMulLeftCosetsEquivQuotient {G : Type u} [Group G] (H : Subgroup G) [Finite H] :
                      (MulAction.fixedPoints (↥H) (G H)) H.normalizer Subgroup.comap H.normalizer.subtype H

                      The fixed points of the action of H on its cosets correspond to normalizer H / H.

                      Equations
                      Instances For
                        theorem Sylow.card_quotient_normalizer_modEq_card_quotient {G : Type u} [Group G] [Finite G] {p : } {n : } [hp : Fact (Nat.Prime p)] {H : Subgroup G} (hH : Nat.card H = p ^ n) :
                        Nat.card (H.normalizer Subgroup.comap H.normalizer.subtype H) Nat.card (G H) [MOD p]

                        If H is a p-subgroup of G, then the index of H inside its normalizer is congruent mod p to the index of H.

                        theorem Sylow.card_normalizer_modEq_card {G : Type u} [Group G] [Finite G] {p : } {n : } [hp : Fact (Nat.Prime p)] {H : Subgroup G} (hH : Nat.card H = p ^ n) :
                        Nat.card H.normalizer Nat.card G [MOD p ^ (n + 1)]

                        If H is a subgroup of G of cardinality p ^ n, then the cardinality of the normalizer of H is congruent mod p ^ (n + 1) to the cardinality of G.

                        theorem Sylow.prime_dvd_card_quotient_normalizer {G : Type u} [Group G] [Finite G] {p : } {n : } [Fact (Nat.Prime p)] (hdvd : p ^ (n + 1) Nat.card G) {H : Subgroup G} (hH : Nat.card H = p ^ n) :
                        p Nat.card (H.normalizer Subgroup.comap H.normalizer.subtype H)

                        If H is a p-subgroup but not a Sylow p-subgroup, then p divides the index of H inside its normalizer.

                        theorem Sylow.prime_pow_dvd_card_normalizer {G : Type u} [Group G] [Finite G] {p : } {n : } [_hp : Fact (Nat.Prime p)] (hdvd : p ^ (n + 1) Nat.card G) {H : Subgroup G} (hH : Nat.card H = p ^ n) :
                        p ^ (n + 1) Nat.card H.normalizer

                        If H is a p-subgroup but not a Sylow p-subgroup of cardinality p ^ n, then p ^ (n + 1) divides the cardinality of the normalizer of H.

                        theorem Sylow.exists_subgroup_card_pow_succ {G : Type u} [Group G] [Finite G] {p : } {n : } [hp : Fact (Nat.Prime p)] (hdvd : p ^ (n + 1) Nat.card G) {H : Subgroup G} (hH : Nat.card H = p ^ n) :
                        ∃ (K : Subgroup G), Nat.card K = p ^ (n + 1) H K

                        If H is a subgroup of G of cardinality p ^ n, then H is contained in a subgroup of cardinality p ^ (n + 1) if p ^ (n + 1) divides the cardinality of G

                        @[irreducible]
                        theorem Sylow.exists_subgroup_card_pow_prime_le {G : Type u} [Group G] [Finite G] (p : ) {n : } {m : } [_hp : Fact (Nat.Prime p)] (_hdvd : p ^ m Nat.card G) (H : Subgroup G) (_hH : Nat.card H = p ^ n) (_hnm : n m) :
                        ∃ (K : Subgroup G), Nat.card K = p ^ m H K

                        If H is a subgroup of G of cardinality p ^ n, then H is contained in a subgroup of cardinality p ^ m if n ≤ m and p ^ m divides the cardinality of G

                        theorem Sylow.exists_subgroup_card_pow_prime {G : Type u} [Group G] [Finite G] (p : ) {n : } [Fact (Nat.Prime p)] (hdvd : p ^ n Nat.card G) :
                        ∃ (K : Subgroup G), Nat.card K = p ^ n

                        A generalisation of Sylow's first theorem. If p ^ n divides the cardinality of G, then there is a subgroup of cardinality p ^ n

                        theorem Sylow.exists_subgroup_card_pow_prime_of_le_card {G : Type u} [Group G] {n : } {p : } (hp : Nat.Prime p) (h : IsPGroup p G) (hn : p ^ n Nat.card G) :
                        ∃ (H : Subgroup G), Nat.card H = p ^ n

                        A special case of Sylow's first theorem. If G is a p-group of size at least p ^ n then there is a subgroup of cardinality p ^ n.

                        theorem Sylow.exists_subgroup_le_card_pow_prime_of_le_card {G : Type u} [Group G] {n : } {p : } (hp : Nat.Prime p) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n Nat.card H) :
                        H'H, Nat.card H' = p ^ n

                        A special case of Sylow's first theorem. If G is a p-group and H a subgroup of size at least p ^ n then there is a subgroup of H of cardinality p ^ n.

                        theorem Sylow.exists_subgroup_le_card_le {G : Type u} [Group G] {k : } {p : } (hp : Nat.Prime p) (h : IsPGroup p G) {H : Subgroup G} (hk : k Nat.card H) (hk₀ : k 0) :
                        H'H, Nat.card H' k k < p * Nat.card H'

                        A special case of Sylow's first theorem. If G is a p-group and H a subgroup of size at least k then there is a subgroup of H of cardinality between k / p and k.

                        theorem Sylow.pow_dvd_card_of_pow_dvd_card {G : Type u} [Group G] [Finite G] {p : } {n : } [hp : Fact (Nat.Prime p)] (P : Sylow p G) (hdvd : p ^ n Nat.card G) :
                        p ^ n Nat.card P
                        theorem Sylow.dvd_card_of_dvd_card {G : Type u} [Group G] [Finite G] {p : } [Fact (Nat.Prime p)] (P : Sylow p G) (hdvd : p Nat.card G) :
                        p Nat.card P
                        theorem Sylow.card_coprime_index {G : Type u} [Group G] [Finite G] {p : } [hp : Fact (Nat.Prime p)] (P : Sylow p G) :
                        (Nat.card P).Coprime (↑P).index

                        Sylow subgroups are Hall subgroups.

                        theorem Sylow.ne_bot_of_dvd_card {G : Type u} [Group G] [Finite G] {p : } [hp : Fact (Nat.Prime p)] (P : Sylow p G) (hdvd : p Nat.card G) :
                        P
                        theorem Sylow.card_eq_multiplicity {G : Type u} [Group G] [Finite G] {p : } [hp : Fact (Nat.Prime p)] (P : Sylow p G) :
                        Nat.card P = p ^ (Nat.card G).factorization p

                        The cardinality of a Sylow subgroup is p ^ n where n is the multiplicity of p in the group order.

                        noncomputable def Sylow.unique_of_normal {G : Type u} [Group G] {p : } [Fact (Nat.Prime p)] [Finite (Sylow p G)] (P : Sylow p G) (h : (↑P).Normal) :

                        If G has a normal Sylow p-subgroup, then it is the only Sylow p-subgroup.

                        Equations
                        • P.unique_of_normal h = { toInhabited := Sylow.inhabited, uniq := }
                        Instances For
                          theorem Sylow.characteristic_of_normal {G : Type u} [Group G] {p : } [Fact (Nat.Prime p)] [Finite (Sylow p G)] (P : Sylow p G) (h : (↑P).Normal) :
                          (↑P).Characteristic
                          theorem Sylow.normal_of_normalizer_normal {G : Type u} [Group G] {p : } [Fact (Nat.Prime p)] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P).normalizer.Normal) :
                          (↑P).Normal
                          @[simp]
                          theorem Sylow.normalizer_normalizer {G : Type u} [Group G] {p : } [Fact (Nat.Prime p)] [Finite (Sylow p G)] (P : Sylow p G) :
                          (↑P).normalizer.normalizer = (↑P).normalizer
                          theorem Sylow.normal_of_all_max_subgroups_normal {G : Type u} [Group G] [Finite G] (hnc : ∀ (H : Subgroup G), IsCoatom HH.Normal) {p : } [Fact (Nat.Prime p)] [Finite (Sylow p G)] (P : Sylow p G) :
                          (↑P).Normal
                          theorem Sylow.normal_of_normalizerCondition {G : Type u} [Group G] (hnc : NormalizerCondition G) {p : } [Fact (Nat.Prime p)] [Finite (Sylow p G)] (P : Sylow p G) :
                          (↑P).Normal
                          noncomputable def Sylow.directProductOfNormal {G : Type u} [Group G] [Finite G] (hn : ∀ {p : } [inst : Fact (Nat.Prime p)] (P : Sylow p G), (↑P).Normal) :
                          ((p : { x : // x (Nat.card G).primeFactors }) → (P : Sylow (↑p) G) → P) ≃* G

                          If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For