Documentation

Mathlib.Order.FixedPoints

Fixed point construction on complete lattices #

This file sets up the basic theory of fixed points of a monotone function in a complete lattice.

Main definitions #

Tags #

fixed point, complete lattice, monotone function

def OrderHom.lfp {α : Type u} [CompleteLattice α] :
(α →o α) →o α

Least fixed point of a monotone function

Equations
def OrderHom.gfp {α : Type u} [CompleteLattice α] :
(α →o α) →o α

Greatest fixed point of a monotone function

Equations
theorem OrderHom.lfp_le {α : Type u} [CompleteLattice α] (f : α →o α) {a : α} (h : f a a) :
lfp f a
theorem OrderHom.lfp_le_fixed {α : Type u} [CompleteLattice α] (f : α →o α) {a : α} (h : f a = a) :
lfp f a
theorem OrderHom.le_lfp {α : Type u} [CompleteLattice α] (f : α →o α) {a : α} (h : ∀ (b : α), f b ba b) :
a lfp f
theorem OrderHom.map_le_lfp {α : Type u} [CompleteLattice α] (f : α →o α) {a : α} (ha : a lfp f) :
f a lfp f
@[simp]
theorem OrderHom.map_lfp {α : Type u} [CompleteLattice α] (f : α →o α) :
f (lfp f) = lfp f
theorem OrderHom.isFixedPt_lfp {α : Type u} [CompleteLattice α] (f : α →o α) :
theorem OrderHom.lfp_le_map {α : Type u} [CompleteLattice α] (f : α →o α) {a : α} (ha : lfp f a) :
lfp f f a
theorem OrderHom.isLeast_lfp_le {α : Type u} [CompleteLattice α] (f : α →o α) :
IsLeast {a : α | f a a} (lfp f)
theorem OrderHom.lfp_induction {α : Type u} [CompleteLattice α] (f : α →o α) {p : αProp} (step : ∀ (a : α), p aa lfp fp (f a)) (hSup : ∀ (s : Set α), (∀ as, p a)p (sSup s)) :
p (lfp f)
theorem OrderHom.le_gfp {α : Type u} [CompleteLattice α] (f : α →o α) {a : α} (h : a f a) :
a gfp f
theorem OrderHom.gfp_le {α : Type u} [CompleteLattice α] (f : α →o α) {a : α} (h : bf b, b a) :
gfp f a
theorem OrderHom.isFixedPt_gfp {α : Type u} [CompleteLattice α] (f : α →o α) :
@[simp]
theorem OrderHom.map_gfp {α : Type u} [CompleteLattice α] (f : α →o α) :
f (gfp f) = gfp f
theorem OrderHom.map_le_gfp {α : Type u} [CompleteLattice α] (f : α →o α) {a : α} (ha : a gfp f) :
f a gfp f
theorem OrderHom.gfp_le_map {α : Type u} [CompleteLattice α] (f : α →o α) {a : α} (ha : gfp f a) :
gfp f f a
theorem OrderHom.isGreatest_gfp_le {α : Type u} [CompleteLattice α] (f : α →o α) :
IsGreatest {a : α | a f a} (gfp f)
theorem OrderHom.gfp_induction {α : Type u} [CompleteLattice α] (f : α →o α) {p : αProp} (step : ∀ (a : α), p agfp f ap (f a)) (hInf : ∀ (s : Set α), (∀ as, p a)p (sInf s)) :
p (gfp f)
theorem OrderHom.map_lfp_comp {α : Type u} {β : Type v} [CompleteLattice α] [CompleteLattice β] (f : β →o α) (g : α →o β) :
f (lfp (g.comp f)) = lfp (f.comp g)
theorem OrderHom.map_gfp_comp {α : Type u} {β : Type v} [CompleteLattice α] [CompleteLattice β] (f : β →o α) (g : α →o β) :
f (gfp (g.comp f)) = gfp (f.comp g)
theorem OrderHom.lfp_lfp {α : Type u} [CompleteLattice α] (h : α →o α →o α) :
theorem OrderHom.gfp_gfp {α : Type u} [CompleteLattice α] (h : α →o α →o α) :
theorem OrderHom.gfp_const_inf_le {α : Type u} [CompleteLattice α] (f : α →o α) (x : α) :
gfp ((const α) x f) x
def OrderHom.prevFixed {α : Type u} [CompleteLattice α] (f : α →o α) (x : α) (hx : f x x) :

Previous fixed point of a monotone map. If f is a monotone self-map of a complete lattice and x is a point such that f x ≤ x, then f.prevFixed x hx is the greatest fixed point of f that is less than or equal to x.

Equations
def OrderHom.nextFixed {α : Type u} [CompleteLattice α] (f : α →o α) (x : α) (hx : x f x) :

Next fixed point of a monotone map. If f is a monotone self-map of a complete lattice and x is a point such that x ≤ f x, then f.nextFixed x hx is the least fixed point of f that is greater than or equal to x.

Equations
theorem OrderHom.prevFixed_le {α : Type u} [CompleteLattice α] (f : α →o α) {x : α} (hx : f x x) :
(f.prevFixed x hx) x
theorem OrderHom.le_nextFixed {α : Type u} [CompleteLattice α] (f : α →o α) {x : α} (hx : x f x) :
x (f.nextFixed x hx)
theorem OrderHom.nextFixed_le {α : Type u} [CompleteLattice α] (f : α →o α) {x : α} (hx : x f x) {y : (Function.fixedPoints f)} (h : x y) :
f.nextFixed x hx y
@[simp]
theorem OrderHom.nextFixed_le_iff {α : Type u} [CompleteLattice α] (f : α →o α) {x : α} (hx : x f x) {y : (Function.fixedPoints f)} :
f.nextFixed x hx y x y
@[simp]
theorem OrderHom.le_prevFixed_iff {α : Type u} [CompleteLattice α] (f : α →o α) {x : α} (hx : f x x) {y : (Function.fixedPoints f)} :
y f.prevFixed x hx y x
theorem OrderHom.le_prevFixed {α : Type u} [CompleteLattice α] (f : α →o α) {x : α} (hx : f x x) {y : (Function.fixedPoints f)} (h : y x) :
y f.prevFixed x hx
theorem OrderHom.le_map_sup_fixedPoints {α : Type u} [CompleteLattice α] (f : α →o α) (x y : (Function.fixedPoints f)) :
x y f (x y)
theorem OrderHom.map_inf_fixedPoints_le {α : Type u} [CompleteLattice α] (f : α →o α) (x y : (Function.fixedPoints f)) :
f (x y) x y
theorem OrderHom.le_map_sSup_subset_fixedPoints {α : Type u} [CompleteLattice α] (f : α →o α) (A : Set α) (hA : A Function.fixedPoints f) :
sSup A f (sSup A)
theorem OrderHom.map_sInf_subset_fixedPoints_le {α : Type u} [CompleteLattice α] (f : α →o α) (A : Set α) (hA : A Function.fixedPoints f) :
f (sInf A) sInf A

Knaster-Tarski Theorem: The fixed points of f form a complete lattice.

Equations

Kleene's fixed point Theorem: The least fixed point in a complete lattice is the supremum of iterating a function on bottom arbitrary often.