Documentation

Mathlib.RingTheory.TwoSidedIdeal.Basic

Two Sided Ideals #

In this file, for any Ring R, we reinterpret I : RingCon R as a two-sided-ideal of a ring.

Main definitions and results #

Equations
theorem TwoSidedIdeal.mem_iff {R : Type u_1} [NonUnitalNonAssocRing R] (I : TwoSidedIdeal R) (x : R) :
x I I.ringCon x 0
theorem TwoSidedIdeal.rel_iff {R : Type u_1} [NonUnitalNonAssocRing R] (I : TwoSidedIdeal R) (x y : R) :
I.ringCon x y x - y I

the coercion from two-sided-ideals to sets is an order embedding

Equations
theorem TwoSidedIdeal.le_iff {R : Type u_1} [NonUnitalNonAssocRing R] {I J : TwoSidedIdeal R} :
I J I J

Two-sided-ideals corresponds to congruence relations on a ring.

Equations
theorem TwoSidedIdeal.ext {R : Type u_1} [NonUnitalNonAssocRing R] {I J : TwoSidedIdeal R} (h : ∀ (x : R), x I x J) :
I = J
theorem TwoSidedIdeal.lt_iff {R : Type u_1} [NonUnitalNonAssocRing R] (I J : TwoSidedIdeal R) :
I < J I J
@[simp]
theorem TwoSidedIdeal.add_mem {R : Type u_1} [NonUnitalNonAssocRing R] (I : TwoSidedIdeal R) {x y : R} (hx : x I) (hy : y I) :
x + y I
theorem TwoSidedIdeal.neg_mem {R : Type u_1} [NonUnitalNonAssocRing R] (I : TwoSidedIdeal R) {x : R} (hx : x I) :
-x I
theorem TwoSidedIdeal.sub_mem {R : Type u_1} [NonUnitalNonAssocRing R] (I : TwoSidedIdeal R) {x y : R} (hx : x I) (hy : y I) :
x - y I
theorem TwoSidedIdeal.mul_mem_left {R : Type u_1} [NonUnitalNonAssocRing R] (I : TwoSidedIdeal R) (x y : R) (hy : y I) :
x * y I
theorem TwoSidedIdeal.mul_mem_right {R : Type u_1} [NonUnitalNonAssocRing R] (I : TwoSidedIdeal R) (x y : R) (hx : x I) :
x * y I
theorem TwoSidedIdeal.nsmul_mem {R : Type u_1} [NonUnitalNonAssocRing R] (I : TwoSidedIdeal R) {x : R} (n : ) (hx : x I) :
n x I
theorem TwoSidedIdeal.zsmul_mem {R : Type u_1} [NonUnitalNonAssocRing R] (I : TwoSidedIdeal R) {x : R} (n : ) (hx : x I) :
n x I
def TwoSidedIdeal.mk' {R : Type u_1} [NonUnitalNonAssocRing R] (carrier : Set R) (zero_mem : 0 carrier) (add_mem : ∀ {x y : R}, x carriery carrierx + y carrier) (neg_mem : ∀ {x : R}, x carrier-x carrier) (mul_mem_left : ∀ {x y : R}, y carrierx * y carrier) (mul_mem_right : ∀ {x y : R}, x carrierx * y carrier) :

The "set-theoretic-way" of constructing a two-sided ideal by providing:

  • the underlying set S;
  • a proof that 0 ∈ S;
  • a proof that x + y ∈ S if x ∈ S and y ∈ S;
  • a proof that -x ∈ S if x ∈ S;
  • a proof that x * y ∈ S if y ∈ S;
  • a proof that x * y ∈ S if x ∈ S.
Equations
  • TwoSidedIdeal.mk' carrier zero_mem add_mem neg_mem mul_mem_left mul_mem_right = { ringCon := { r := fun (x y : R) => x - y carrier, iseqv := , mul' := , add' := } }
@[simp]
theorem TwoSidedIdeal.mem_mk' {R : Type u_1} [NonUnitalNonAssocRing R] (carrier : Set R) (zero_mem : 0 carrier) (add_mem : ∀ {x y : R}, x carriery carrierx + y carrier) (neg_mem : ∀ {x : R}, x carrier-x carrier) (mul_mem_left : ∀ {x y : R}, y carrierx * y carrier) (mul_mem_right : ∀ {x y : R}, x carrierx * y carrier) (x : R) :
x mk' carrier zero_mem add_mem neg_mem mul_mem_left mul_mem_right x carrier
@[simp]
theorem TwoSidedIdeal.coe_mk' {R : Type u_1} [NonUnitalNonAssocRing R] (carrier : Set R) (zero_mem : 0 carrier) (add_mem : ∀ {x y : R}, x carriery carrierx + y carrier) (neg_mem : ∀ {x : R}, x carrier-x carrier) (mul_mem_left : ∀ {x y : R}, y carrierx * y carrier) (mul_mem_right : ∀ {x y : R}, x carrierx * y carrier) :
(mk' carrier zero_mem add_mem neg_mem mul_mem_left mul_mem_right) = carrier
Equations
Equations
Equations
Equations
Equations
Equations
Equations

The coercion into the ring as a AddMonoidHom

Equations