Bounding the mutual information #
theorem
multiDist_of_cast
{m m' : ℕ}
(h : m' = m)
{Ω : Fin m → Type u_1}
(hΩ : (i : Fin m) → MeasureTheory.MeasureSpace (Ω i))
(hΩfin : ∀ (i : Fin m), MeasureTheory.IsFiniteMeasure MeasureTheory.volume)
{G : Type u_2}
[MeasurableFinGroup G]
(X : (i : Fin m) → Ω i → G)
:
theorem
ProbabilityTheory.iIndepFun.sum_elim
{Ω : Type u_1}
{I : Type u_2}
{J : Type u_3}
{G : Type u_4}
[MeasurableSpace Ω]
[hG : MeasurableSpace G]
(μ : MeasureTheory.Measure Ω)
{f : I → Ω → G}
{g : J → Ω → G}
(hf_indep : iIndepFun f μ)
(hg_indep : iIndepFun g μ)
(hindep : IndepFun (fun (ω : Ω) (x : I) => f x ω) (fun (ω : Ω) (y : J) => g y ω) μ)
:
For Mathlib?
theorem
condMultiDist_of_cast
{m m' : ℕ}
(h : m' = m)
{Ω : Fin m → Type u_1}
(hΩ : (i : Fin m) → MeasureTheory.MeasureSpace (Ω i))
{G : Type u_2}
{S : Type u_3}
[MeasurableFinGroup G]
[Fintype S]
(X : (i : Fin m) → Ω i → G)
(Y : (i : Fin m) → Ω i → S)
:
theorem
mutual_information_le
{G Ωₒ : Type u}
[MeasurableFinGroup G]
[MeasureTheory.MeasureSpace Ωₒ]
{p : multiRefPackage G Ωₒ}
{Ω : Type u}
[hΩ : MeasureTheory.MeasureSpace Ω]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
{X : Fin p.m → Ω → G}
(hX : ∀ (i : Fin p.m), Measurable (X i))
(h_indep : ProbabilityTheory.iIndepFun X MeasureTheory.volume)
(h_min : multiTauMinimizes p (fun (x : Fin p.m) => Ω) (fun (x : Fin p.m) => hΩ) X)
{Ω' : Type u}
[hΩ' : MeasureTheory.MeasureSpace Ω']
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
{X' : Fin p.m × Fin p.m → Ω' → G}
(hX' : ∀ (i j : Fin p.m), Measurable (X' (i, j)))
(h_indep' : ProbabilityTheory.iIndepFun X' MeasureTheory.volume)
(hperm :
∀ (j : Fin p.m),
∃ (e : Fin p.m ≃ Fin p.m),
ProbabilityTheory.IdentDistrib (fun (ω : Ω') (i : Fin p.m) => X' (i, j) ω)
(fun (ω : Ω) (i : Fin p.m) => X (e i) ω) MeasureTheory.volume MeasureTheory.volume)
:
Suppose that $X_{i, j}$, $1 \leq i, j \leq m$, are jointly independent $G$-valued random variables, such that for each $j = 1,\dots,m$, the random variables $(X_{i, j})_{i = 1}^m$ coincide in distribution with some permutation of $X_{[m]}$. Write $$ {\mathcal I} := \bbI[ \bigl(\sum_{i=1}^m X_{i, j}\bigr)_{j =1}^{m} : \bigl(\sum_{j=1}^m X_{i, j}\bigr)_{i = 1}^m \; \big| \; \sum_{i=1}^m \sum_{j = 1}^m X_{i, j} ]. $$ Then ${\mathcal I} \leq 4 m^2 \eta k.$