theorem
mutual_information_le
{G : Type u}
{Ωₒ : Type u}
[MeasureableFinGroup G]
[MeasureTheory.MeasureSpace Ωₒ]
(p : multiRefPackage G Ωₒ)
(Ω : Type u)
[hΩ : MeasureTheory.MeasureSpace Ω]
(X : Fin p.m → Ω → G)
(h_indep : ProbabilityTheory.iIndepFun (fun (x : Fin p.m) => inferInstance) X MeasureTheory.volume)
(h_min : multiTauMinimizes p (fun (x : Fin p.m) => Ω) (fun (x : Fin p.m) => hΩ) X)
(Ω' : Type u_1)
[MeasureTheory.MeasureSpace Ω']
(X' : Fin p.m × Fin p.m → Ω' → G)
(h_indep' : ProbabilityTheory.iIndepFun (fun (x : Fin p.m × Fin p.m) => inferInstance) X' MeasureTheory.volume)
(hperm : ∀ (j : Fin p.m),
∃ (e : Fin p.m ≃ Fin p.m),
ProbabilityTheory.IdentDistrib (fun (ω : Ω') (i : Fin p.m) => X' (i, j) ω) (fun (ω : Ω) (i : Fin p.m) => X (e i) ω)
MeasureTheory.volume MeasureTheory.volume)
:
Suppose that $X_{i,j}$, $1 \leq i,j \leq m$, are jointly independent $G$-valued random variables, such that for each $j = 1,\dots,m$, the random variables $(X_{i,j})_{i = 1}^m$ coincide in distribution with some permutation of $X_{[m]}$. Write $$ {\mathcal I} := \bbI[ \bigl(\sum_{i=1}^m X_{i,j}\bigr)_{j =1}^{m} : \bigl(\sum_{j=1}^m X_{i,j}\bigr)_{i = 1}^m \; \big| \; \sum_{i=1}^m \sum_{j = 1}^m X_{i,j} ]. $$ Then ${\mathcal I} \leq 4 m^2 \eta k.$