Documentation

PFR.BoundingMutual

Bounding the mutual information #

Main definitions: #

Main results #

theorem mutual_information_le {G Ωₒ : Type u} [MeasureableFinGroup G] [MeasureTheory.MeasureSpace Ωₒ] (p : multiRefPackage G Ωₒ) (Ω : Type u) [ : MeasureTheory.MeasureSpace Ω] (X : Fin p.mΩG) (h_indep : ProbabilityTheory.iIndepFun X MeasureTheory.volume) (h_min : multiTauMinimizes p (fun (x : Fin p.m) => Ω) (fun (x : Fin p.m) => ) X) (Ω' : Type u_1) [MeasureTheory.MeasureSpace Ω'] (X' : Fin p.m × Fin p.mΩ'G) (h_indep' : ProbabilityTheory.iIndepFun X' MeasureTheory.volume) (hperm : ∀ (j : Fin p.m), ∃ (e : Fin p.m Fin p.m), ProbabilityTheory.IdentDistrib (fun (ω : Ω') (i : Fin p.m) => X' (i, j) ω) (fun (ω : Ω) (i : Fin p.m) => X (e i) ω) MeasureTheory.volume MeasureTheory.volume) :
I[fun (ω : Ω') (j : Fin p.m) => i : Fin p.m, X' (i, j) ω : fun (ω : Ω') (i : Fin p.m) => j : Fin p.m, X' (i, j) ω|fun (ω : Ω') => i : Fin p.m, j : Fin p.m, X' (i, j) ω] 4 * p.m ^ 2 * p.η * D[X ; fun (x : Fin p.m) => ]

Suppose that Xi,j, 1i,jm, are jointly independent G-valued random variables, such that for each j=1,,m, the random variables (Xi,j)i=1m coincide in distribution with some permutation of X[m]. Write I:=\bbI[(i=1mXi,j)j=1m:(j=1mXi,j)i=1m|i=1mj=1mXi,j]. Then I4m2ηk.