Documentation

PFR.ForMathlib.Entropy.Kernel.Basic

Entropy of a kernel with respect to a measure #

Main definitions #

Main statements #

Notations #

noncomputable def ProbabilityTheory.Kernel.entropy {S : Type u_2} {T : Type u_3} [MeasurableSpace S] [MeasurableSpace T] (κ : Kernel T S) (μ : MeasureTheory.Measure T) :

Entropy of a kernel with respect to a measure.

Equations
Instances For

    Entropy of a kernel with respect to a measure.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      Pretty printer defined by notation3 command.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem ProbabilityTheory.Kernel.entropy_congr {S : Type u_2} {T : Type u_3} [MeasurableSpace S] [MeasurableSpace T] {μ : MeasureTheory.Measure T} {κ η : Kernel T S} (h : κ =ᵐ[μ] η) :
        Hk[κ , μ] = Hk[η , μ]

        Constant kernels with finite support, have finite kernel support.

        Composing a finitely supported measure with a finitely supported kernel gives a finitely supported kernel.

        theorem ProbabilityTheory.Kernel.entropy_eq_integral_sum {S : Type u_2} {T : Type u_3} [MeasurableSpace S] [MeasurableSpace T] (κ : Kernel T S) [IsZeroOrMarkovKernel κ] (μ : MeasureTheory.Measure T) :
        Hk[κ , μ] = (x : T), (fun (y : T) => ∑' (x : S), ((κ y) {x}).toReal.negMulLog) x μ
        theorem ProbabilityTheory.Kernel.entropy_snd_compProd_deterministic_of_injective {S : Type u_2} {T : Type u_3} {U : Type u_4} [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] [MeasurableSingletonClass U] (κ : Kernel T S) [IsMarkovKernel κ] (μ : MeasureTheory.Measure T) {f : T × SU} (hf : ∀ (t : T), Function.Injective fun (x : S) => f (t, x)) (hmes : Measurable f) :
        Hk[(κ.compProd (deterministic f hmes)).snd , μ] = Hk[κ , μ]
        theorem ProbabilityTheory.Kernel.entropy_map_of_injective {S : Type u_2} {T : Type u_3} {U : Type u_4} [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] [MeasurableSingletonClass U] (κ : Kernel T S) (μ : MeasureTheory.Measure T) {f : SU} (hf : Function.Injective f) (hmes : Measurable f) :
        Hk[κ.map f , μ] = Hk[κ , μ]