Entropy of a kernel with respect to a measure #
Main definitions #
Kernel.entropy
: entropy of a kernelκ
with respect to a measureμ
,μ[fun t ↦ measureEntropy (κ t)]
. We use the notationHk[κ, μ]
.
Main statements #
chain_rule
:Hk[κ, μ] = Hk[fst κ, μ] + Hk[condKernel κ, μ ⊗ₘ (fst κ)]
.entropy_map_le
: data-processing inequality for the kernel entropy
Notations #
Hk[κ, μ] = Kernel.entropy κ μ
noncomputable def
ProbabilityTheory.Kernel.entropy
{S : Type u_2}
{T : Type u_3}
[MeasurableSpace S]
[MeasurableSpace T]
(κ : ProbabilityTheory.Kernel T S)
(μ : MeasureTheory.Measure T)
:
Entropy of a kernel with respect to a measure.
Instances For
Pretty printer defined by notation3
command.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Entropy of a kernel with respect to a measure.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
ProbabilityTheory.Kernel.entropy_zero_measure
{S : Type u_2}
{T : Type u_3}
[MeasurableSpace S]
[MeasurableSpace T]
(κ : ProbabilityTheory.Kernel T S)
:
Hk[κ , 0] = 0
@[simp]
theorem
ProbabilityTheory.Kernel.entropy_zero_kernel
{S : Type u_2}
{T : Type u_3}
[MeasurableSpace S]
[MeasurableSpace T]
(μ : MeasureTheory.Measure T)
:
Hk[0 , μ] = 0
theorem
ProbabilityTheory.Kernel.entropy_congr
{S : Type u_2}
{T : Type u_3}
[MeasurableSpace S]
[MeasurableSpace T]
{μ : MeasureTheory.Measure T}
{κ : ProbabilityTheory.Kernel T S}
{η : ProbabilityTheory.Kernel T S}
(h : ⇑κ =ᵐ[μ] ⇑η)
:
Hk[κ , μ] = Hk[η , μ]
theorem
ProbabilityTheory.Kernel.entropy_nonneg
{S : Type u_2}
{T : Type u_3}
[MeasurableSpace S]
[MeasurableSpace T]
(κ : ProbabilityTheory.Kernel T S)
(μ : MeasureTheory.Measure T)
:
0 ≤ Hk[κ , μ]
@[simp]
theorem
ProbabilityTheory.Kernel.entropy_const
{S : Type u_2}
{T : Type u_3}
[MeasurableSpace S]
[MeasurableSpace T]
(ν : MeasureTheory.Measure S)
(μ : MeasureTheory.Measure T)
:
Hk[ProbabilityTheory.Kernel.const T ν , μ] = (μ Set.univ).toReal * Hm[ν]
theorem
ProbabilityTheory.Kernel.finiteKernelSupport_of_const
{S : Type u_2}
{T : Type u_3}
[MeasurableSpace S]
[MeasurableSpace T]
(ν : MeasureTheory.Measure S)
[ProbabilityTheory.FiniteSupport ν]
:
(ProbabilityTheory.Kernel.const T ν).FiniteKernelSupport
Constant kernels with finite support, have finite kernel support.
theorem
ProbabilityTheory.Kernel.finiteSupport_of_compProd'
{S : Type u_2}
{T : Type u_3}
[MeasurableSpace S]
[MeasurableSpace T]
[MeasurableSingletonClass S]
[MeasurableSingletonClass T]
{μ : MeasureTheory.Measure T}
[MeasureTheory.IsFiniteMeasure μ]
{κ : ProbabilityTheory.Kernel T S}
[ProbabilityTheory.IsZeroOrMarkovKernel κ]
[ProbabilityTheory.FiniteSupport μ]
(hκ : κ.FiniteKernelSupport)
:
ProbabilityTheory.FiniteSupport (μ.compProd κ)
Composing a finitely supported measure with a finitely supported kernel gives a finitely supported kernel.
theorem
ProbabilityTheory.Kernel.finiteSupport_of_compProd
{S : Type u_2}
{T : Type u_3}
[MeasurableSpace S]
[MeasurableSpace T]
[MeasurableSingletonClass S]
[Countable T]
[MeasurableSingletonClass T]
{μ : MeasureTheory.Measure T}
[MeasureTheory.IsFiniteMeasure μ]
{κ : ProbabilityTheory.Kernel T S}
[ProbabilityTheory.IsZeroOrMarkovKernel κ]
[ProbabilityTheory.FiniteSupport μ]
(hκ : κ.AEFiniteKernelSupport μ)
:
ProbabilityTheory.FiniteSupport (μ.compProd κ)
theorem
ProbabilityTheory.Kernel.aefiniteKernelSupport_condDistrib
{Ω : Type u_1}
{S : Type u_2}
{T : Type u_3}
[mΩ : MeasurableSpace Ω]
[MeasurableSpace S]
[MeasurableSpace T]
[Nonempty S]
[Countable S]
[MeasurableSingletonClass S]
[Countable T]
[MeasurableSingletonClass T]
(X : Ω → S)
(Y : Ω → T)
(μ : MeasureTheory.Measure Ω)
[MeasureTheory.IsFiniteMeasure μ]
(hX : Measurable X)
(hY : Measurable Y)
[FiniteRange X]
:
(ProbabilityTheory.condDistrib X Y μ).AEFiniteKernelSupport (MeasureTheory.Measure.map Y μ)
theorem
ProbabilityTheory.Kernel.entropy_le_log_card
{S : Type u_2}
{T : Type u_3}
[MeasurableSpace S]
[MeasurableSpace T]
[MeasurableSingletonClass S]
(κ : ProbabilityTheory.Kernel T S)
(μ : MeasureTheory.Measure T)
[Fintype S]
[MeasureTheory.IsProbabilityMeasure μ]
:
Hk[κ , μ] ≤ Real.log ↑(Fintype.card S)
theorem
ProbabilityTheory.Kernel.entropy_eq_integral_sum
{S : Type u_2}
{T : Type u_3}
[MeasurableSpace S]
[MeasurableSpace T]
(κ : ProbabilityTheory.Kernel T S)
[ProbabilityTheory.IsZeroOrMarkovKernel κ]
(μ : MeasureTheory.Measure T)
:
Hk[κ , μ] = ∫ (x : T), (fun (y : T) => ∑' (x : S), ((κ y) {x}).toReal.negMulLog) x ∂μ
theorem
ProbabilityTheory.Kernel.entropy_snd_compProd_deterministic_of_injective
{S : Type u_2}
{T : Type u_3}
{U : Type u_4}
[MeasurableSpace S]
[MeasurableSpace T]
[MeasurableSpace U]
[MeasurableSingletonClass U]
(κ : ProbabilityTheory.Kernel T S)
[ProbabilityTheory.IsMarkovKernel κ]
(μ : MeasureTheory.Measure T)
{f : T × S → U}
(hf : ∀ (t : T), Function.Injective fun (x : S) => f (t, x))
(hmes : Measurable f)
:
Hk[(κ.compProd (ProbabilityTheory.Kernel.deterministic f hmes)).snd , μ] = Hk[κ , μ]
theorem
ProbabilityTheory.Kernel.entropy_map_of_injective
{S : Type u_2}
{T : Type u_3}
{U : Type u_4}
[MeasurableSpace S]
[MeasurableSpace T]
[MeasurableSpace U]
[MeasurableSingletonClass U]
(κ : ProbabilityTheory.Kernel T S)
(μ : MeasureTheory.Measure T)
{f : S → U}
(hf : Function.Injective f)
(hmes : Measurable f)
:
Hk[κ.map f , μ] = Hk[κ , μ]
theorem
ProbabilityTheory.Kernel.entropy_map_swap
{S : Type u_2}
{T : Type u_3}
{U : Type u_4}
[MeasurableSpace S]
[MeasurableSpace T]
[MeasurableSpace U]
[MeasurableSingletonClass S]
[MeasurableSingletonClass U]
(κ : ProbabilityTheory.Kernel T (S × U))
(μ : MeasureTheory.Measure T)
:
Hk[κ.map Prod.swap , μ] = Hk[κ , μ]
theorem
ProbabilityTheory.Kernel.entropy_swapRight
{S : Type u_2}
{T : Type u_3}
{U : Type u_4}
[MeasurableSpace S]
[MeasurableSpace T]
[MeasurableSpace U]
[MeasurableSingletonClass S]
[MeasurableSingletonClass U]
(κ : ProbabilityTheory.Kernel T (S × U))
(μ : MeasureTheory.Measure T)
:
Hk[κ.swapRight , μ] = Hk[κ , μ]
theorem
ProbabilityTheory.Kernel.entropy_comap
{S : Type u_2}
{T : Type u_3}
[MeasurableSpace S]
[MeasurableSpace T]
[MeasurableSingletonClass T]
{T' : Type u_5}
[MeasurableSpace T']
[MeasurableSingletonClass T']
(κ : ProbabilityTheory.Kernel T S)
(μ : MeasureTheory.Measure T)
(f : T' → T)
(hf : MeasurableEmbedding f)
(hf_range : Set.range f =ᵐ[μ] Set.univ)
[MeasureTheory.IsFiniteMeasure μ]
[MeasureTheory.IsFiniteMeasure (MeasureTheory.Measure.comap f μ)]
(hfμ : ProbabilityTheory.FiniteSupport (MeasureTheory.Measure.comap f μ))
:
Hk[κ.comap f ⋯ , MeasureTheory.Measure.comap f μ] = Hk[κ , μ]
theorem
ProbabilityTheory.Kernel.FiniteSupport.comap_equiv
{T : Type u_3}
[MeasurableSpace T]
[MeasurableSingletonClass T]
{T' : Type u_5}
[MeasurableSpace T']
{μ : MeasureTheory.Measure T}
(f : T' ≃ᵐ T)
[ProbabilityTheory.FiniteSupport μ]
:
theorem
ProbabilityTheory.Kernel.entropy_comap_equiv
{S : Type u_2}
{T : Type u_3}
[MeasurableSpace S]
[MeasurableSpace T]
[MeasurableSingletonClass T]
{T' : Type u_5}
[MeasurableSpace T']
[MeasurableSingletonClass T']
(κ : ProbabilityTheory.Kernel T S)
{μ : MeasureTheory.Measure T}
(f : T' ≃ᵐ T)
[MeasureTheory.IsFiniteMeasure μ]
[ProbabilityTheory.FiniteSupport μ]
:
Hk[κ.comap ⇑f ⋯ , MeasureTheory.Measure.comap (⇑f) μ] = Hk[κ , μ]
theorem
ProbabilityTheory.Kernel.entropy_comap_swap
{S : Type u_2}
{T : Type u_3}
[MeasurableSpace S]
[MeasurableSpace T]
[MeasurableSingletonClass T]
{T' : Type u_5}
[MeasurableSpace T']
[MeasurableSingletonClass T']
(κ : ProbabilityTheory.Kernel (T' × T) S)
{μ : MeasureTheory.Measure (T' × T)}
[MeasureTheory.IsFiniteMeasure μ]
[ProbabilityTheory.FiniteSupport μ]
:
Hk[κ.comap Prod.swap ⋯ , MeasureTheory.Measure.comap Prod.swap μ] = Hk[κ , μ]
theorem
ProbabilityTheory.Kernel.entropy_prodMkLeft_unit
{S : Type u_2}
{T : Type u_3}
[MeasurableSpace S]
[MeasurableSpace T]
[MeasurableSingletonClass T]
(κ : ProbabilityTheory.Kernel T S)
{μ : MeasureTheory.Measure T}
[MeasureTheory.IsZeroOrProbabilityMeasure μ]
[ProbabilityTheory.FiniteSupport μ]
:
Hk[ProbabilityTheory.Kernel.prodMkLeft Unit κ , MeasureTheory.Measure.map (Prod.mk ()) μ] = Hk[κ , μ]
theorem
ProbabilityTheory.Kernel.entropy_compProd_aux
{S : Type u_2}
{T : Type u_3}
{U : Type u_4}
[MeasurableSpace S]
[MeasurableSpace T]
[MeasurableSpace U]
[MeasurableSingletonClass S]
[MeasurableSingletonClass T]
[MeasurableSingletonClass U]
{μ : MeasureTheory.Measure T}
[MeasureTheory.IsFiniteMeasure μ]
{κ : ProbabilityTheory.Kernel T S}
[ProbabilityTheory.IsZeroOrMarkovKernel κ]
{η : ProbabilityTheory.Kernel (T × S) U}
[ProbabilityTheory.IsMarkovKernel η]
[ProbabilityTheory.FiniteSupport μ]
(hκ : κ.FiniteKernelSupport)
(hη : η.FiniteKernelSupport)
:
theorem
ProbabilityTheory.Kernel.entropy_compProd'
{S : Type u_2}
{T : Type u_3}
{U : Type u_4}
[MeasurableSpace S]
[MeasurableSpace T]
[MeasurableSpace U]
[MeasurableSingletonClass S]
[Countable S]
[MeasurableSingletonClass T]
[Countable T]
[MeasurableSingletonClass U]
{μ : MeasureTheory.Measure T}
[MeasureTheory.IsFiniteMeasure μ]
{κ : ProbabilityTheory.Kernel T S}
[ProbabilityTheory.IsZeroOrMarkovKernel κ]
{η : ProbabilityTheory.Kernel (T × S) U}
[ProbabilityTheory.IsMarkovKernel η]
[ProbabilityTheory.FiniteSupport μ]
(hκ : κ.FiniteKernelSupport)
(hη : η.FiniteKernelSupport)
:
theorem
ProbabilityTheory.Kernel.entropy_compProd
{S : Type u_2}
{T : Type u_3}
{U : Type u_4}
[MeasurableSpace S]
[MeasurableSpace T]
[MeasurableSpace U]
[Countable S]
[MeasurableSingletonClass S]
[Countable T]
[MeasurableSingletonClass T]
[MeasurableSingletonClass U]
{μ : MeasureTheory.Measure T}
[MeasureTheory.IsFiniteMeasure μ]
{κ : ProbabilityTheory.Kernel T S}
[ProbabilityTheory.IsZeroOrMarkovKernel κ]
{η : ProbabilityTheory.Kernel (T × S) U}
[ProbabilityTheory.IsMarkovKernel η]
[ProbabilityTheory.FiniteSupport μ]
(hκ : κ.AEFiniteKernelSupport μ)
(hη : η.AEFiniteKernelSupport (μ.compProd κ))
:
@[simp]
theorem
ProbabilityTheory.Kernel.entropy_deterministic
{S : Type u_2}
{T : Type u_3}
[MeasurableSpace S]
[MeasurableSpace T]
[MeasurableSingletonClass S]
[Countable T]
[MeasurableSingletonClass T]
(f : T → S)
(μ : MeasureTheory.Measure T)
:
Hk[ProbabilityTheory.Kernel.deterministic f ⋯ , μ] = 0
@[simp]
theorem
ProbabilityTheory.Kernel.entropy_compProd_deterministic
{S : Type u_2}
{T : Type u_3}
{U : Type u_4}
[MeasurableSpace S]
[MeasurableSpace T]
[MeasurableSpace U]
[Countable S]
[MeasurableSingletonClass S]
[Countable T]
[MeasurableSingletonClass T]
[MeasurableSingletonClass U]
(κ : ProbabilityTheory.Kernel T S)
[ProbabilityTheory.IsZeroOrMarkovKernel κ]
(μ : MeasureTheory.Measure T)
[MeasureTheory.IsFiniteMeasure μ]
(f : T × S → U)
[ProbabilityTheory.FiniteSupport μ]
(hκ : κ.AEFiniteKernelSupport μ)
:
Hk[κ.compProd (ProbabilityTheory.Kernel.deterministic f ⋯) , μ] = Hk[κ , μ]
theorem
ProbabilityTheory.Kernel.nonempty_of_isMarkovKernel
{α : Type u_5}
{β : Type u_6}
[MeasurableSpace α]
[MeasurableSpace β]
(κ : ProbabilityTheory.Kernel α β)
[ProbabilityTheory.IsMarkovKernel κ]
[Nonempty α]
:
Nonempty β
theorem
ProbabilityTheory.Kernel.nonempty_of_isProbabilityMeasure_of_isMarkovKernel
{α : Type u_5}
{β : Type u_6}
[MeasurableSpace α]
[MeasurableSpace β]
(μ : MeasureTheory.Measure α)
[MeasureTheory.IsProbabilityMeasure μ]
(κ : ProbabilityTheory.Kernel α β)
[ProbabilityTheory.IsMarkovKernel κ]
:
Nonempty β
theorem
ProbabilityTheory.Kernel.chain_rule
{S : Type u_2}
{T : Type u_3}
{U : Type u_4}
[MeasurableSpace S]
[MeasurableSpace T]
[MeasurableSpace U]
[Countable S]
[MeasurableSingletonClass S]
[Countable T]
[MeasurableSingletonClass T]
[Countable U]
[MeasurableSingletonClass U]
{κ : ProbabilityTheory.Kernel T (S × U)}
[ProbabilityTheory.IsZeroOrMarkovKernel κ]
[hU : Nonempty U]
{μ : MeasureTheory.Measure T}
[MeasureTheory.IsZeroOrProbabilityMeasure μ]
[ProbabilityTheory.FiniteSupport μ]
(hκ : κ.AEFiniteKernelSupport μ)
:
theorem
ProbabilityTheory.Kernel.chain_rule'
{S : Type u_2}
{T : Type u_3}
{U : Type u_4}
[MeasurableSpace S]
[MeasurableSpace T]
[MeasurableSpace U]
[Nonempty S]
[Countable S]
[MeasurableSingletonClass S]
[Countable T]
[MeasurableSingletonClass T]
[Countable U]
[MeasurableSingletonClass U]
{κ : ProbabilityTheory.Kernel T (S × U)}
[ProbabilityTheory.IsZeroOrMarkovKernel κ]
{μ : MeasureTheory.Measure T}
[MeasureTheory.IsZeroOrProbabilityMeasure μ]
[ProbabilityTheory.FiniteSupport μ]
(hκ : κ.AEFiniteKernelSupport μ)
:
@[simp]
theorem
ProbabilityTheory.Kernel.entropy_prodMkRight
{S : Type u_2}
{T : Type u_3}
{U : Type u_4}
[MeasurableSpace S]
[MeasurableSpace T]
[MeasurableSpace U]
[Countable S]
[MeasurableSingletonClass S]
[Countable T]
[MeasurableSingletonClass T]
{κ : ProbabilityTheory.Kernel T S}
{η : ProbabilityTheory.Kernel T U}
[ProbabilityTheory.IsMarkovKernel κ]
{μ : MeasureTheory.Measure T}
[MeasureTheory.IsZeroOrProbabilityMeasure μ]
[ProbabilityTheory.FiniteSupport μ]
(hκ : κ.AEFiniteKernelSupport μ)
:
Hk[ProbabilityTheory.Kernel.prodMkRight S η , μ.compProd κ] = Hk[η , μ]
theorem
ProbabilityTheory.Kernel.entropy_prodMkRight'
{S : Type u_2}
{T : Type u_3}
{U : Type u_4}
[MeasurableSpace S]
[MeasurableSpace T]
[MeasurableSpace U]
[Countable S]
[MeasurableSingletonClass S]
[Countable T]
[MeasurableSingletonClass T]
{η : ProbabilityTheory.Kernel T U}
{μ : MeasureTheory.Measure T}
[MeasureTheory.IsZeroOrProbabilityMeasure μ]
{ν : MeasureTheory.Measure S}
[MeasureTheory.IsProbabilityMeasure ν]
[ProbabilityTheory.FiniteSupport μ]
[ProbabilityTheory.FiniteSupport ν]
:
Hk[ProbabilityTheory.Kernel.prodMkRight S η , μ.prod ν] = Hk[η , μ]
@[simp]
theorem
ProbabilityTheory.Kernel.entropy_prodMkLeft
{S : Type u_2}
{T : Type u_3}
{U : Type u_4}
[MeasurableSpace S]
[MeasurableSpace T]
[MeasurableSpace U]
[Countable S]
[MeasurableSingletonClass S]
[Countable T]
[MeasurableSingletonClass T]
{η : ProbabilityTheory.Kernel T U}
{ν : MeasureTheory.Measure S}
[MeasureTheory.IsProbabilityMeasure ν]
{μ : MeasureTheory.Measure T}
[MeasureTheory.IsZeroOrProbabilityMeasure μ]
[ProbabilityTheory.FiniteSupport μ]
[ProbabilityTheory.FiniteSupport ν]
:
Hk[ProbabilityTheory.Kernel.prodMkLeft S η , ν.prod μ] = Hk[η , μ]
@[simp]
theorem
ProbabilityTheory.Kernel.entropy_prod
{S : Type u_2}
{T : Type u_3}
{U : Type u_4}
[MeasurableSpace S]
[MeasurableSpace T]
[MeasurableSpace U]
[Countable S]
[MeasurableSingletonClass S]
[Countable T]
[MeasurableSingletonClass T]
[Countable U]
[MeasurableSingletonClass U]
{κ : ProbabilityTheory.Kernel T S}
{η : ProbabilityTheory.Kernel T U}
[ProbabilityTheory.IsMarkovKernel κ]
[ProbabilityTheory.IsMarkovKernel η]
{μ : MeasureTheory.Measure T}
[MeasureTheory.IsZeroOrProbabilityMeasure μ]
[ProbabilityTheory.FiniteSupport μ]
(hκ : κ.AEFiniteKernelSupport μ)
(hη : η.AEFiniteKernelSupport μ)
:
theorem
ProbabilityTheory.Kernel.entropy_map_le
{S : Type u_2}
{T : Type u_3}
{U : Type u_4}
[MeasurableSpace S]
[MeasurableSpace T]
[MeasurableSpace U]
[Countable S]
[MeasurableSingletonClass S]
[Countable T]
[MeasurableSingletonClass T]
[Countable U]
[MeasurableSingletonClass U]
{κ : ProbabilityTheory.Kernel T S}
[ProbabilityTheory.IsZeroOrMarkovKernel κ]
{μ : MeasureTheory.Measure T}
[MeasureTheory.IsZeroOrProbabilityMeasure μ]
(f : S → U)
[ProbabilityTheory.FiniteSupport μ]
(hκ : κ.AEFiniteKernelSupport μ)
:
Hk[κ.map f , μ] ≤ Hk[κ , μ]
Data-processing inequality for the kernel entropy.
theorem
ProbabilityTheory.Kernel.entropy_of_map_eq_of_map
{S : Type u_2}
{T : Type u_3}
{U : Type u_4}
[MeasurableSpace S]
[MeasurableSpace T]
[MeasurableSpace U]
[Countable S]
[MeasurableSingletonClass S]
[Countable T]
[MeasurableSingletonClass T]
[Countable U]
[MeasurableSingletonClass U]
{κ : ProbabilityTheory.Kernel T S}
{η : ProbabilityTheory.Kernel T U}
[ProbabilityTheory.IsZeroOrMarkovKernel κ]
[ProbabilityTheory.IsZeroOrMarkovKernel η]
{μ : MeasureTheory.Measure T}
[MeasureTheory.IsZeroOrProbabilityMeasure μ]
(f : S → U)
(g : U → S)
(h1 : η = κ.map f)
(h2 : κ = η.map g)
[ProbabilityTheory.FiniteSupport μ]
(hκ : κ.AEFiniteKernelSupport μ)
(hη : η.AEFiniteKernelSupport μ)
:
Hk[κ , μ] = Hk[η , μ]
theorem
ProbabilityTheory.Kernel.entropy_snd_le
{S : Type u_2}
{T : Type u_3}
{U : Type u_4}
[MeasurableSpace S]
[MeasurableSpace T]
[MeasurableSpace U]
[Countable S]
[MeasurableSingletonClass S]
[Countable T]
[MeasurableSingletonClass T]
[Countable U]
[MeasurableSingletonClass U]
{κ : ProbabilityTheory.Kernel T (S × U)}
[ProbabilityTheory.IsZeroOrMarkovKernel κ]
{μ : MeasureTheory.Measure T}
[MeasureTheory.IsZeroOrProbabilityMeasure μ]
[ProbabilityTheory.FiniteSupport μ]
(hκ : κ.AEFiniteKernelSupport μ)
:
Hk[κ.snd , μ] ≤ Hk[κ , μ]
theorem
ProbabilityTheory.Kernel.entropy_fst_le
{S : Type u_2}
{T : Type u_3}
{U : Type u_4}
[MeasurableSpace S]
[MeasurableSpace T]
[MeasurableSpace U]
[Countable S]
[MeasurableSingletonClass S]
[Countable T]
[MeasurableSingletonClass T]
[Countable U]
[MeasurableSingletonClass U]
(κ : ProbabilityTheory.Kernel T (S × U))
[ProbabilityTheory.IsZeroOrMarkovKernel κ]
(μ : MeasureTheory.Measure T)
[MeasureTheory.IsZeroOrProbabilityMeasure μ]
[ProbabilityTheory.FiniteSupport μ]
(hκ : κ.AEFiniteKernelSupport μ)
:
Hk[κ.fst , μ] ≤ Hk[κ , μ]