Documentation

PFR.Mathlib.Probability.Kernel.Disintegration

Disintegration of kernels in finite spaces #

We can write κ : kernel S (T × U) as a composition-product (fst κ) ⊗ₖ (condKernel κ) where fst κ : kernel S T and condKernel : kernel (S × T) U is defined in this file.

theorem MeasureTheory.lintegral_piecewise {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α} (hs : MeasurableSet s) (f : αENNReal) (g : αENNReal) [(j : α) → Decidable (j s)] :
∫⁻ (a : α), s.piecewise f g aμ = ∫⁻ (a : α) in s, f aμ + ∫⁻ (a : α) in s, g aμ
theorem ProbabilityTheory.kernel.condKernel_apply {S : Type u_2} {T : Type u_3} {U : Type u_4} [Countable S] [MeasurableSpace S] [DiscreteMeasurableSpace S] [MeasurableSpace T] [Countable U] [Nonempty U] [MeasurableSpace U] [DiscreteMeasurableSpace U] (κ : (ProbabilityTheory.kernel T (S × U))) [ProbabilityTheory.IsFiniteKernel κ] (x : T × S) (hx : (κ x.1) (Prod.fst ⁻¹' {x.2}) 0) :
(ProbabilityTheory.kernel.condKernel κ) x = (κ x.1).condKernel x.2
theorem ProbabilityTheory.kernel.condKernel_apply' {S : Type u_2} {T : Type u_3} {U : Type u_4} [Countable S] [MeasurableSpace S] [DiscreteMeasurableSpace S] [MeasurableSpace T] [Countable U] [Nonempty U] [MeasurableSpace U] [DiscreteMeasurableSpace U] (κ : (ProbabilityTheory.kernel T (S × U))) [ProbabilityTheory.IsFiniteKernel κ] (x : T × S) (hx : (κ x.1) (Prod.fst ⁻¹' {x.2}) 0) {s : Set U} (hs : MeasurableSet s) :
((ProbabilityTheory.kernel.condKernel κ) x) s = ((κ x.1) (Prod.fst ⁻¹' {x.2}))⁻¹ * (κ x.1) ({x.2} ×ˢ s)
theorem ProbabilityTheory.condDistrib_apply' {Ω : Type u_1} {S : Type u_2} {T : Type u_3} [mΩ : MeasurableSpace Ω] [Countable S] [Nonempty S] [MeasurableSpace S] [DiscreteMeasurableSpace S] [Countable T] [MeasurableSpace T] [DiscreteMeasurableSpace T] {X : ΩS} {Y : ΩT} (hX : Measurable X) (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsFiniteMeasure μ] (x : T) (hYx : μ (Y ⁻¹' {x}) 0) {s : Set S} (hs : MeasurableSet s) :
((ProbabilityTheory.condDistrib X Y μ) x) s = (μ (Y ⁻¹' {x}))⁻¹ * μ (Y ⁻¹' {x} X ⁻¹' s)
theorem ProbabilityTheory.condDistrib_fst_of_ne_zero {Ω : Type u_1} {S : Type u_2} {T : Type u_3} {U : Type u_4} [mΩ : MeasurableSpace Ω] [Countable S] [Nonempty S] [MeasurableSpace S] [DiscreteMeasurableSpace S] [Countable T] [Nonempty T] [MeasurableSpace T] [DiscreteMeasurableSpace T] [Countable U] [MeasurableSpace U] [DiscreteMeasurableSpace U] {X : ΩS} {Y : ΩT} {Z : ΩU} (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsFiniteMeasure μ] (u : U) (hu : μ (Z ⁻¹' {u}) 0) :
theorem ProbabilityTheory.condDistrib_fst_ae_eq {Ω : Type u_1} {S : Type u_2} {T : Type u_3} {U : Type u_4} [mΩ : MeasurableSpace Ω] [Countable S] [Nonempty S] [MeasurableSpace S] [DiscreteMeasurableSpace S] [Countable T] [Nonempty T] [MeasurableSpace T] [DiscreteMeasurableSpace T] [Countable U] [MeasurableSpace U] [DiscreteMeasurableSpace U] {X : ΩS} {Y : ΩT} {Z : ΩU} (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsFiniteMeasure μ] :
(MeasureTheory.Measure.map Z μ).ae.EventuallyEq (ProbabilityTheory.kernel.fst (ProbabilityTheory.condDistrib (fun (a : Ω) => (X a, Y a)) Z μ)) (ProbabilityTheory.condDistrib X Z μ)
theorem ProbabilityTheory.condDistrib_snd_of_ne_zero {Ω : Type u_1} {S : Type u_2} {T : Type u_3} {U : Type u_4} [mΩ : MeasurableSpace Ω] [Countable S] [Nonempty S] [MeasurableSpace S] [DiscreteMeasurableSpace S] [Countable T] [Nonempty T] [MeasurableSpace T] [DiscreteMeasurableSpace T] [Countable U] [MeasurableSpace U] [DiscreteMeasurableSpace U] {X : ΩS} {Y : ΩT} {Z : ΩU} (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsFiniteMeasure μ] (u : U) (hu : μ (Z ⁻¹' {u}) 0) :
theorem ProbabilityTheory.condDistrib_snd_ae_eq {Ω : Type u_1} {S : Type u_2} {T : Type u_3} {U : Type u_4} [mΩ : MeasurableSpace Ω] [Countable S] [Nonempty S] [MeasurableSpace S] [DiscreteMeasurableSpace S] [Countable T] [Nonempty T] [MeasurableSpace T] [DiscreteMeasurableSpace T] [Countable U] [MeasurableSpace U] [DiscreteMeasurableSpace U] {X : ΩS} {Y : ΩT} {Z : ΩU} (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsFiniteMeasure μ] :
(MeasureTheory.Measure.map Z μ).ae.EventuallyEq (ProbabilityTheory.kernel.snd (ProbabilityTheory.condDistrib (fun (a : Ω) => (X a, Y a)) Z μ)) (ProbabilityTheory.condDistrib Y Z μ)
theorem ProbabilityTheory.condKernel_condDistrib_ae_eq {Ω : Type u_1} {S : Type u_2} {T : Type u_3} {U : Type u_4} [mΩ : MeasurableSpace Ω] [Countable S] [Nonempty S] [MeasurableSpace S] [DiscreteMeasurableSpace S] [Countable T] [Nonempty T] [MeasurableSpace T] [DiscreteMeasurableSpace T] [Countable U] [MeasurableSpace U] [DiscreteMeasurableSpace U] {X : ΩS} {Y : ΩT} {Z : ΩU} (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsFiniteMeasure μ] :
(MeasureTheory.Measure.map (fun (ω : Ω) => (Z ω, X ω)) μ).ae.EventuallyEq (ProbabilityTheory.kernel.condKernel (ProbabilityTheory.condDistrib (fun (a : Ω) => (X a, Y a)) Z μ)) (ProbabilityTheory.condDistrib Y (fun (ω : Ω) => (Z ω, X ω)) μ)
theorem ProbabilityTheory.swap_condDistrib_ae_eq {Ω : Type u_1} {S : Type u_2} {T : Type u_3} {U : Type u_4} [mΩ : MeasurableSpace Ω] [Countable S] [MeasurableSpace S] [DiscreteMeasurableSpace S] [Countable T] [Nonempty T] [MeasurableSpace T] [DiscreteMeasurableSpace T] [Countable U] [MeasurableSpace U] [DiscreteMeasurableSpace U] {X : ΩS} {Y : ΩT} {Z : ΩU} (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsFiniteMeasure μ] :
(MeasureTheory.Measure.map (fun (ω : Ω) => (Z ω, X ω)) μ).ae.EventuallyEq (ProbabilityTheory.kernel.comap (ProbabilityTheory.condDistrib Y (fun (a : Ω) => (X a, Z a)) μ) Prod.swap ) (ProbabilityTheory.condDistrib Y (fun (ω : Ω) => (Z ω, X ω)) μ)
theorem ProbabilityTheory.condDistrib_eq_prod_of_indepFun {Ω : Type u_1} {S : Type u_2} {T : Type u_3} {U : Type u_4} [mΩ : MeasurableSpace Ω] [Countable S] [Nonempty S] [MeasurableSpace S] [DiscreteMeasurableSpace S] [Countable T] [Nonempty T] [MeasurableSpace T] [DiscreteMeasurableSpace T] [Countable U] [MeasurableSpace U] [DiscreteMeasurableSpace U] {X : ΩS} {Y : ΩT} {Z : ΩU} {V : Type u_5} [Countable V] [MeasurableSpace V] [MeasurableSingletonClass V] {W : ΩV} (hX : Measurable X) (hZ : Measurable Z) (hY : Measurable Y) (hW : Measurable W) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsProbabilityMeasure μ] (h : ProbabilityTheory.IndepFun (fun (ω : Ω) => (X ω, Z ω)) (fun (ω : Ω) => (Y ω, W ω)) μ) :
(MeasureTheory.Measure.map (fun (ω : Ω) => (Z ω, W ω)) μ).ae.EventuallyEq (ProbabilityTheory.condDistrib (fun (ω : Ω) => (X ω, Y ω)) (fun (ω : Ω) => (Z ω, W ω)) μ) (ProbabilityTheory.kernel.prod (ProbabilityTheory.kernel.prodMkRight V (ProbabilityTheory.condDistrib X Z μ)) (ProbabilityTheory.kernel.prodMkLeft U (ProbabilityTheory.condDistrib Y W μ)))
theorem MeasureTheory.Measure.ae_of_compProd_eq_zero {α : Type u_5} {β : Type u_6} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} [MeasureTheory.SFinite μ] {κ : (ProbabilityTheory.kernel α β)} [ProbabilityTheory.IsSFiniteKernel κ] {s : Set (α × β)} (hs : (μ.compProd κ) s = 0) :
∀ᵐ (a : α) ∂μ, (κ a) (Prod.mk a ⁻¹' s) = 0
theorem MeasureTheory.Measure.ae_of_ae_compProd {α : Type u_5} {β : Type u_6} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} [MeasureTheory.SFinite μ] {κ : (ProbabilityTheory.kernel α β)} [ProbabilityTheory.IsSFiniteKernel κ] {p : α × βProp} (hp : ∀ᵐ (x : α × β) ∂μ.compProd κ, p x) :
∀ᵐ (a : α) ∂μ, ∀ᵐ (b : β) ∂κ a, p (a, b)
theorem ProbabilityTheory.kernel.compProd_congr {S : Type u_2} {T : Type u_3} {U : Type u_4} [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] {μ : MeasureTheory.Measure T} [MeasureTheory.SFinite μ] {κ : (ProbabilityTheory.kernel T S)} {κ' : (ProbabilityTheory.kernel T S)} [ProbabilityTheory.IsMarkovKernel κ] [ProbabilityTheory.IsMarkovKernel κ'] {η : (ProbabilityTheory.kernel (T × S) U)} {η' : (ProbabilityTheory.kernel (T × S) U)} [ProbabilityTheory.IsMarkovKernel η] [ProbabilityTheory.IsMarkovKernel η'] (hκ : μ.ae.EventuallyEq κ κ') (hη : (μ.compProd κ).ae.EventuallyEq η η') :
μ.ae.EventuallyEq (ProbabilityTheory.kernel.compProd κ η) (ProbabilityTheory.kernel.compProd κ' η')

The analogue of FiniteSupport for probability kernels.

Equations
Instances For
    Equations
    Instances For

      Finite kernel support locally implies uniform finite kernel support.