Documentation

PFR.Mathlib.MeasureTheory.Integral.Lebesgue

theorem MeasureTheory.lintegral_eq_sum {α : Type u_1} [MeasurableSpace α] [MeasurableSingletonClass α] (μ : MeasureTheory.Measure α) (f : αENNReal) [Fintype α] :
∫⁻ (x : α), f xμ = Finset.univ.sum fun (x : α) => μ {x} * f x
theorem MeasureTheory.lintegral_eq_sum_countable {α : Type u_1} [MeasurableSpace α] [MeasurableSingletonClass α] (μ : MeasureTheory.Measure α) (f : αENNReal) [Countable α] :
∫⁻ (x : α), f xμ = ∑' (x : α), μ {x} * f x
theorem MeasureTheory.lintegral_eq_zero_of_ae_zero {α : Type u_1} [MeasurableSpace α] {μ : MeasureTheory.Measure α} {f : αENNReal} {E : Set α} (hE : μ E = 0) (hf : xE, f x = 0) (hmes : MeasurableSet E) :
∫⁻ (x : α), f xμ = 0
theorem MeasureTheory.lintegral_eq_sum' {α : Type u_1} [MeasurableSpace α] [MeasurableSingletonClass α] (μ : MeasureTheory.Measure α) {s : Finset α} (hA : μ (s) = 0) (f : αENNReal) :
∫⁻ (x : α), f xμ = s.sum fun (x : α) => f x * μ {x}
theorem MeasureTheory.lintegral_eq_single {α : Type u_1} [MeasurableSpace α] [MeasurableSingletonClass α] (μ : MeasureTheory.Measure α) (a : α) (f : αENNReal) (ha : ∀ (b : α), b af b = 0) :
∫⁻ (x : α), f xμ = f a * μ {a}