TODO #
Rename setLIntegral_congr
to setLIntegral_congr_set
theorem
MeasureTheory.lintegral_eq_zero_of_ae_zero
{α : Type u_1}
[MeasurableSpace α]
{μ : MeasureTheory.Measure α}
{s : Set α}
{f : α → ENNReal}
(hs : μ sᶜ = 0)
(hf : ∀ x ∈ s, f x = 0)
(hmes : MeasurableSet s)
:
∫⁻ (x : α), f x ∂μ = 0
theorem
MeasureTheory.lintegral_eq_setLIntegral
{α : Type u_1}
[MeasurableSpace α]
{μ : MeasureTheory.Measure α}
{s : Set α}
(hs : μ sᶜ = 0)
(f : α → ENNReal)
:
∫⁻ (x : α), f x ∂μ = ∫⁻ (x : α) in s, f x ∂μ
theorem
MeasureTheory.lintegral_piecewise
{α : Type u_1}
[MeasurableSpace α]
{μ : MeasureTheory.Measure α}
{s : Set α}
(hs : MeasurableSet s)
(f g : α → ENNReal)
[(j : α) → Decidable (j ∈ s)]
:
theorem
MeasureTheory.lintegral_eq_sum
{α : Type u_1}
[MeasurableSpace α]
[MeasurableSingletonClass α]
(μ : MeasureTheory.Measure α)
(f : α → ENNReal)
[Fintype α]
:
theorem
MeasureTheory.lintegral_eq_tsum
{α : Type u_1}
[MeasurableSpace α]
[MeasurableSingletonClass α]
(μ : MeasureTheory.Measure α)
(f : α → ENNReal)
[Countable α]
:
theorem
MeasureTheory.setLIntegral_eq_sum
{α : Type u_1}
[MeasurableSpace α]
[MeasurableSingletonClass α]
(μ : MeasureTheory.Measure α)
(s : Finset α)
(f : α → ENNReal)
:
theorem
MeasureTheory.lintegral_eq_single
{α : Type u_1}
[MeasurableSpace α]
[MeasurableSingletonClass α]
(μ : MeasureTheory.Measure α)
(a : α)
(f : α → ENNReal)
(ha : ∀ (b : α), b ≠ a → f b = 0)
: