Documentation

PFR.ForMathlib.FiniteRange.IdentDistrib

theorem ProbabilityTheory.identDistrib_of_finiteRange {Ω : Type u_8} {Ω₀ : Type u_9} {S : Type u_10} [MeasurableSpace Ω] [MeasurableSpace Ω₀] [MeasurableSpace S] [MeasurableSingletonClass S] [hS : Nonempty S] {μ : MeasureTheory.Measure Ω} {μ₀ : MeasureTheory.Measure Ω₀} {X₀ : Ω₀S} [FiniteRange X₀] {X : ΩS} (hX : Measurable X) (hi : IdentDistrib X₀ X μ₀ μ) :
∃ (X' : ΩS), Measurable X' FiniteRange X' X' =ᵐ[μ] X

If X has identical distribution to X₀, and X₀ has finite range, then X is almost everywhere equivalent to a random variable of finite range.

theorem ProbabilityTheory.independent_copies_finiteRange {Ω : Type u_1} {Ω' : Type u_2} {α : Type u_3} {β : Type u_5} { : MeasurableSpace Ω} {mΩ' : MeasurableSpace Ω'} { : MeasurableSpace α} { : MeasurableSpace β} {X : Ωα} {Y : Ω'β} (hX : Measurable X) (hY : Measurable Y) [FiniteRange X] [FiniteRange Y] [MeasurableSingletonClass α] [MeasurableSingletonClass β] (μ : MeasureTheory.Measure Ω) (μ' : MeasureTheory.Measure Ω') [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure μ'] :
∃ (ν : MeasureTheory.Measure (α × β)) (X' : α × βα) (Y' : α × ββ), MeasureTheory.IsProbabilityMeasure ν Measurable X' Measurable Y' IndepFun X' Y' ν IdentDistrib X' X ν μ IdentDistrib Y' Y ν μ' FiniteRange X' FiniteRange Y'

A version of independent_copies that guarantees that the copies have FiniteRange if the original variables do.

theorem ProbabilityTheory.independent_copies3_nondep_finiteRange {α : Type u} [mS : MeasurableSpace α] [MeasurableSingletonClass α] {Ω₁ : Type u_1} {Ω₂ : Type u_2} {Ω₃ : Type u_3} [MeasurableSpace Ω₁] [MeasurableSpace Ω₂] [MeasurableSpace Ω₃] {X₁ : Ω₁α} {X₂ : Ω₂α} {X₃ : Ω₃α} (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₃ : Measurable X₃) [FiniteRange X₁] [FiniteRange X₂] [FiniteRange X₃] (μ₁ : MeasureTheory.Measure Ω₁) (μ₂ : MeasureTheory.Measure Ω₂) (μ₃ : MeasureTheory.Measure Ω₃) [hμ₁ : MeasureTheory.IsProbabilityMeasure μ₁] [hμ₂ : MeasureTheory.IsProbabilityMeasure μ₂] [hμ₃ : MeasureTheory.IsProbabilityMeasure μ₃] :
∃ (A : Type (max u_1 u_2 u_3)) (x : MeasurableSpace A) (μA : MeasureTheory.Measure A) (X₁' : Aα) (X₂' : Aα) (X₃' : Aα), MeasureTheory.IsProbabilityMeasure μA iIndepFun ![X₁', X₂', X₃'] μA Measurable X₁' Measurable X₂' Measurable X₃' IdentDistrib X₁' X₁ μA μ₁ IdentDistrib X₂' X₂ μA μ₂ IdentDistrib X₃' X₃ μA μ₃ FiniteRange X₁' FiniteRange X₂' FiniteRange X₃'

A version of independent_copies3_nondep that guarantees that the copies have FiniteRange if the original variables do.

theorem ProbabilityTheory.independent_copies4_nondep_finiteRange {α : Type u} [mS : MeasurableSpace α] [MeasurableSingletonClass α] {Ω₁ : Type u_1} {Ω₂ : Type u_2} {Ω₃ : Type u_3} {Ω₄ : Type u_4} [MeasurableSpace Ω₁] [MeasurableSpace Ω₂] [MeasurableSpace Ω₃] [MeasurableSpace Ω₄] {X₁ : Ω₁α} {X₂ : Ω₂α} {X₃ : Ω₃α} {X₄ : Ω₄α} (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₃ : Measurable X₃) (hX₄ : Measurable X₄) [FiniteRange X₁] [FiniteRange X₂] [FiniteRange X₃] [FiniteRange X₄] (μ₁ : MeasureTheory.Measure Ω₁) (μ₂ : MeasureTheory.Measure Ω₂) (μ₃ : MeasureTheory.Measure Ω₃) (μ₄ : MeasureTheory.Measure Ω₄) [hμ₁ : MeasureTheory.IsProbabilityMeasure μ₁] [hμ₂ : MeasureTheory.IsProbabilityMeasure μ₂] [hμ₃ : MeasureTheory.IsProbabilityMeasure μ₃] [hμ₄ : MeasureTheory.IsProbabilityMeasure μ₄] :
∃ (A : Type (max u_1 u_2 u_3 u_4)) (x : MeasurableSpace A) (μA : MeasureTheory.Measure A) (X₁' : Aα) (X₂' : Aα) (X₃' : Aα) (X₄' : Aα), MeasureTheory.IsProbabilityMeasure μA iIndepFun ![X₁', X₂', X₃', X₄'] μA Measurable X₁' Measurable X₂' Measurable X₃' Measurable X₄' IdentDistrib X₁' X₁ μA μ₁ IdentDistrib X₂' X₂ μA μ₂ IdentDistrib X₃' X₃ μA μ₃ IdentDistrib X₄' X₄ μA μ₄ FiniteRange X₁' FiniteRange X₂' FiniteRange X₃' FiniteRange X₄'

A version of independent_copies4_nondep that guarantees that the copies have FiniteRange if the original variables do.