Documentation

PFR.Mathlib.Probability.IdentDistrib

The first projection in a product space with measure μ.prod ν is distributed like μ.

The second projection in a product space with measure μ.prod ν is distributed like ν.

theorem ProbabilityTheory.IdentDistrib.cond {α : Type u_1} {β : Type u_2} {γ : Type u_3} [MeasurableSpace α] [MeasurableSpace β] [MeasurableSpace γ] {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure β} {f : αγ} {f' : αγ} {g : βγ} {g' : βγ} {s : Set γ} (hs : MeasurableSet s) (hf' : Measurable f') (hg' : Measurable g') (hfg : ProbabilityTheory.IdentDistrib (fun (a : α) => (f a, f' a)) (fun (b : β) => (g b, g' b)) μ ν) :
theorem ProbabilityTheory.identDistrib_comp_left {α : Type u_1} {γ : Type u_3} {δ : Type u_4} [MeasurableSpace α] [MeasurableSpace γ] [MeasurableSpace δ] {μ : MeasureTheory.Measure α} {f : αγ} {i : δα} (hi : MeasurableEmbedding i) (hi' : ∀ᵐ (a : α) ∂μ, a Set.range i) (hf : Measurable f) :

A function is identically distributed to itself composed with a measurable embedding of conull range.

theorem ProbabilityTheory.identDistrib_comp_right {α : Type u_1} {γ : Type u_3} {δ : Type u_4} [MeasurableSpace α] [MeasurableSpace γ] [MeasurableSpace δ] {μ : MeasureTheory.Measure α} {f : αγ} {i : δα} (hi : MeasurableEmbedding i) (hi' : ∀ᵐ (a : α) ∂μ, a Set.range i) (hf : Measurable f) :

A function is identically distributed to itself composed with a measurable embedding of conull range.

theorem ProbabilityTheory.IdentDistrib.comp_left {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} [MeasurableSpace α] [MeasurableSpace β] [MeasurableSpace γ] [MeasurableSpace δ] {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure β} {f : αγ} {g : βγ} {i : δα} (hi : MeasurableEmbedding i) (hi' : ∀ᵐ (a : α) ∂μ, a Set.range i) (hf : Measurable f) (hfg : ProbabilityTheory.IdentDistrib f g μ ν) :

Composing identically distributed functions with a measurable embedding of conull range gives identically distributed functions.

theorem ProbabilityTheory.IdentDistrib.comp_right {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} [MeasurableSpace α] [MeasurableSpace β] [MeasurableSpace γ] [MeasurableSpace δ] {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure β} {f : αγ} {g : βγ} {i : δβ} (hi : MeasurableEmbedding i) (hi' : ∀ᵐ (a : β) ∂ν, a Set.range i) (hg : Measurable g) (hfg : ProbabilityTheory.IdentDistrib f g μ ν) :

Composing identically distributed functions with a measurable embedding of conull range gives identically distributed functions.

theorem MeasureTheory.MeasurePreserving.identDistrib {α : Type u_5} {β : Type u_6} {γ : Type u_7} {X : βγ} {f : αβ} [MeasurableSpace α] [MeasurableSpace β] [MeasurableSpace γ] {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure β} (hf : MeasureTheory.MeasurePreserving f μ ν) (hX : AEMeasurable X ν) :
theorem ProbabilityTheory.IdentDistrib.prod_mk {Ω : Type u_5} {Ω' : Type u_6} {β : Type u_9} {mΩ : MeasurableSpace Ω} {mΩ' : MeasurableSpace Ω'} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure Ω} {ν : MeasureTheory.Measure Ω'} {f : Ωβ} {g : Ωβ} {f' : Ω'β} {g' : Ω'β} [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hff' : ProbabilityTheory.IdentDistrib f f' μ ν) (hgg' : ProbabilityTheory.IdentDistrib g g' μ ν) (h : ProbabilityTheory.IndepFun f g μ) (h' : ProbabilityTheory.IndepFun f' g' ν) :
ProbabilityTheory.IdentDistrib (fun (x : Ω) => (f x, g x)) (fun (x : Ω') => (f' x, g' x)) μ ν
theorem ProbabilityTheory.IdentDistrib.mul {Ω : Type u_5} {Ω' : Type u_6} {β : Type u_9} {mΩ : MeasurableSpace Ω} {mΩ' : MeasurableSpace Ω'} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure Ω} {ν : MeasureTheory.Measure Ω'} {f : Ωβ} {g : Ωβ} {f' : Ω'β} {g' : Ω'β} [Mul β] [MeasurableMul₂ β] [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hff' : ProbabilityTheory.IdentDistrib f f' μ ν) (hgg' : ProbabilityTheory.IdentDistrib g g' μ ν) (h : ProbabilityTheory.IndepFun f g μ) (h' : ProbabilityTheory.IndepFun f' g' ν) :
ProbabilityTheory.IdentDistrib (f * g) (f' * g') μ ν
theorem ProbabilityTheory.IdentDistrib.add {Ω : Type u_5} {Ω' : Type u_6} {β : Type u_9} {mΩ : MeasurableSpace Ω} {mΩ' : MeasurableSpace Ω'} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure Ω} {ν : MeasureTheory.Measure Ω'} {f : Ωβ} {g : Ωβ} {f' : Ω'β} {g' : Ω'β} [Add β] [MeasurableAdd₂ β] [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hff' : ProbabilityTheory.IdentDistrib f f' μ ν) (hgg' : ProbabilityTheory.IdentDistrib g g' μ ν) (h : ProbabilityTheory.IndepFun f g μ) (h' : ProbabilityTheory.IndepFun f' g' ν) :
ProbabilityTheory.IdentDistrib (f + g) (f' + g') μ ν
theorem ProbabilityTheory.identDistrib_map {Ω : Type u_5} {α : Type u_7} {β : Type u_9} {mΩ : MeasurableSpace Ω} [MeasurableSpace α] [MeasurableSpace β] {X : Ωα} (hX : Measurable X) {f : αβ} (hf : Measurable f) (μ : MeasureTheory.Measure Ω) :

A random variable is identically distributed to its pullbacks.

theorem ProbabilityTheory.identDistrib_ulift_self {Ω : Type u_5} {α : Type u_7} {mΩ : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} [MeasurableSpace α] {X : Ωα} (hX : Measurable X) :
theorem ProbabilityTheory.identDistrib_of_sum {Ω : Type u_5} {Ω' : Type u_6} {α : Type u_7} {T : Type u_11} {mΩ : MeasurableSpace Ω} {mΩ' : MeasurableSpace Ω'} [MeasurableSpace α] {X : Ωα} {Y : Ω'α} {μ : TMeasureTheory.Measure Ω} {μ' : TMeasureTheory.Measure Ω'} {w : TENNReal} (s : Finset T) (hX : Measurable X) (hY : Measurable Y) (h_ident : ∀ (y : T), w y 0ProbabilityTheory.IdentDistrib X Y (μ y) (μ' y)) :
ProbabilityTheory.IdentDistrib X Y (∑ ys, w y μ y) (∑ ys, w y μ' y)

To show identical distribution of two random variables on a mixture of probability measures, it suffices to do so on each non-trivial component.

theorem ProbabilityTheory.identDistrib_comp_fst {Ω : Type u_5} {Ω' : Type u_6} {α : Type u_7} {mΩ : MeasurableSpace Ω} {mΩ' : MeasurableSpace Ω'} [MeasurableSpace α] {X : Ωα} (hX : Measurable X) (μ : MeasureTheory.Measure Ω) (μ' : MeasureTheory.Measure Ω') [MeasureTheory.IsProbabilityMeasure μ'] :
ProbabilityTheory.IdentDistrib (X Prod.fst) X (μ.prod μ') μ

A random variable is identically distributed to its lift to a product space (in the first factor).

theorem ProbabilityTheory.identDistrib_comp_snd {Ω : Type u_5} {Ω' : Type u_6} {α : Type u_7} {mΩ : MeasurableSpace Ω} {mΩ' : MeasurableSpace Ω'} [MeasurableSpace α] {X : Ωα} (hX : Measurable X) (μ : MeasureTheory.Measure Ω) (μ' : MeasureTheory.Measure Ω') [MeasureTheory.SigmaFinite μ] [MeasureTheory.IsProbabilityMeasure μ'] :
ProbabilityTheory.IdentDistrib (X Prod.snd) X (μ'.prod μ) μ

A random variable is identically distributed to its lift to a product space (in the second factor).

theorem ProbabilityTheory.independent_copies {Ω : Type u_5} {Ω' : Type u_6} {α : Type u_7} {β : Type u_9} {mΩ : MeasurableSpace Ω} {mΩ' : MeasurableSpace Ω'} [MeasurableSpace α] [MeasurableSpace β] {X : Ωα} {Y : Ω'β} (hX : Measurable X) (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) (μ' : MeasureTheory.Measure Ω') [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure μ'] :

For X, Y random variables, one can find independent copies X', Y' of X, Y.

theorem ProbabilityTheory.independent_copies_two {α : Type u_7} {β : Type u_9} [MeasurableSpace α] [MeasurableSpace β] {Ω : Type u} {Ω' : Type v} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.MeasureSpace Ω'] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {X : Ωα} {Y : Ω'β} (hX : Measurable X) (hY : Measurable Y) :
∃ (Ω'' : Type (max u v)) (m'' : MeasureTheory.MeasureSpace Ω'') (X' : Ω''α) (Y' : Ω''β), MeasureTheory.IsProbabilityMeasure MeasureTheory.volume Measurable X' Measurable Y' ProbabilityTheory.IndepFun X' Y' MeasureTheory.volume ProbabilityTheory.IdentDistrib X' X MeasureTheory.volume MeasureTheory.volume ProbabilityTheory.IdentDistrib Y' Y MeasureTheory.volume MeasureTheory.volume

For X, Y random variables, one can find independent copies X', Y' of X, Y. Version formulated in spaces with a canonical measures.

theorem ProbabilityTheory.independent_copies' {I : Type u} [Fintype I] {α : IType u'} [mS : (i : I) → MeasurableSpace (α i)] {Ω : IType v} [mΩ : (i : I) → MeasurableSpace (Ω i)] (X : (i : I) → Ω iα i) (hX : ∀ (i : I), Measurable (X i)) (μ : (i : I) → MeasureTheory.Measure (Ω i)) [∀ (i : I), MeasureTheory.IsProbabilityMeasure (μ i)] :
∃ (A : Type (max u v)) (x : MeasurableSpace A) (μA : MeasureTheory.Measure A) (X' : (i : I) → Aα i), MeasureTheory.IsProbabilityMeasure μA ProbabilityTheory.iIndepFun mS X' μA ∀ (i : I), Measurable (X' i) ProbabilityTheory.IdentDistrib (X' i) (X i) μA (μ i)

Let Xᵢ : Ωᵢ → Sᵢ be random variables for i = 1,...,k. Then there exist jointly independent random variables Xᵢ' : Ω' → Sᵢ for i=1,...,k such that each Xᵢ' is a copy of Xᵢ.

theorem ProbabilityTheory.independent_copies3_nondep {α : Type u} [mS : MeasurableSpace α] {Ω₁ : Type u_1} {Ω₂ : Type u_2} {Ω₃ : Type u_3} [MeasurableSpace Ω₁] [MeasurableSpace Ω₂] [MeasurableSpace Ω₃] {X₁ : Ω₁α} {X₂ : Ω₂α} {X₃ : Ω₃α} (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₃ : Measurable X₃) (μ₁ : MeasureTheory.Measure Ω₁) (μ₂ : MeasureTheory.Measure Ω₂) (μ₃ : MeasureTheory.Measure Ω₃) [hμ₁ : MeasureTheory.IsProbabilityMeasure μ₁] [hμ₂ : MeasureTheory.IsProbabilityMeasure μ₂] [hμ₃ : MeasureTheory.IsProbabilityMeasure μ₃] :
∃ (A : Type (max u_1 u_2 u_3)) (x : MeasurableSpace A) (μA : MeasureTheory.Measure A) (X₁' : Aα) (X₂' : Aα) (X₃' : Aα), MeasureTheory.IsProbabilityMeasure μA ProbabilityTheory.iIndepFun (fun (x : Fin (Nat.succ 0).succ.succ) => mS) ![X₁', X₂', X₃'] μA Measurable X₁' Measurable X₂' Measurable X₃' ProbabilityTheory.IdentDistrib X₁' X₁ μA μ₁ ProbabilityTheory.IdentDistrib X₂' X₂ μA μ₂ ProbabilityTheory.IdentDistrib X₃' X₃ μA μ₃

A version with exactly 3 random variables that have the same codomain. It's unfortunately incredibly painful to prove this from the general case.

theorem ProbabilityTheory.independent_copies4_nondep {α : Type u} [mS : MeasurableSpace α] {Ω₁ : Type u_1} {Ω₂ : Type u_2} {Ω₃ : Type u_3} {Ω₄ : Type u_4} [mΩ₁ : MeasurableSpace Ω₁] [mΩ₂ : MeasurableSpace Ω₂] [mΩ₃ : MeasurableSpace Ω₃] [mΩ₄ : MeasurableSpace Ω₄] {X₁ : Ω₁α} {X₂ : Ω₂α} {X₃ : Ω₃α} {X₄ : Ω₄α} (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₃ : Measurable X₃) (hX₄ : Measurable X₄) (μ₁ : MeasureTheory.Measure Ω₁) (μ₂ : MeasureTheory.Measure Ω₂) (μ₃ : MeasureTheory.Measure Ω₃) (μ₄ : MeasureTheory.Measure Ω₄) [hμ₁ : MeasureTheory.IsProbabilityMeasure μ₁] [hμ₂ : MeasureTheory.IsProbabilityMeasure μ₂] [hμ₃ : MeasureTheory.IsProbabilityMeasure μ₃] [hμ₄ : MeasureTheory.IsProbabilityMeasure μ₄] :
∃ (A : Type (max u_1 u_2 u_3 u_4)) (x : MeasurableSpace A) (μA : MeasureTheory.Measure A) (X₁' : Aα) (X₂' : Aα) (X₃' : Aα) (X₄' : Aα), MeasureTheory.IsProbabilityMeasure μA ProbabilityTheory.iIndepFun (fun (x : Fin (Nat.succ 0).succ.succ.succ) => mS) ![X₁', X₂', X₃', X₄'] μA Measurable X₁' Measurable X₂' Measurable X₃' Measurable X₄' ProbabilityTheory.IdentDistrib X₁' X₁ μA μ₁ ProbabilityTheory.IdentDistrib X₂' X₂ μA μ₂ ProbabilityTheory.IdentDistrib X₃' X₃ μA μ₃ ProbabilityTheory.IdentDistrib X₄' X₄ μA μ₄

A version with exactly 4 random variables that have the same codomain. It's unfortunately incredibly painful to prove this from the general case.

theorem ProbabilityTheory.identDistrib_of_finiteRange {Ω : Type u_12} {Ω₀ : Type u_13} {S : Type u_14} [MeasurableSpace Ω] [MeasurableSpace Ω₀] [MeasurableSpace S] [MeasurableSingletonClass S] [hS : Nonempty S] {μ : MeasureTheory.Measure Ω} {μ₀ : MeasureTheory.Measure Ω₀} {X₀ : Ω₀S} [FiniteRange X₀] {X : ΩS} (hX : Measurable X) (hi : ProbabilityTheory.IdentDistrib X₀ X μ₀ μ) :
∃ (X' : ΩS), Measurable X' FiniteRange X' X' =ᵐ[μ] X

If X has identical distribution to X₀, and X₀ has finite range, then X is almost everywhere equivalent to a random variable of finite range.

A version of independent_copies that guarantees that the copies have FiniteRange if the original variables do.

theorem ProbabilityTheory.independent_copies3_nondep_finiteRange {α : Type u} [mS : MeasurableSpace α] [MeasurableSingletonClass α] {Ω₁ : Type u_1} {Ω₂ : Type u_2} {Ω₃ : Type u_3} [MeasurableSpace Ω₁] [MeasurableSpace Ω₂] [MeasurableSpace Ω₃] {X₁ : Ω₁α} {X₂ : Ω₂α} {X₃ : Ω₃α} (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₃ : Measurable X₃) [FiniteRange X₁] [FiniteRange X₂] [FiniteRange X₃] (μ₁ : MeasureTheory.Measure Ω₁) (μ₂ : MeasureTheory.Measure Ω₂) (μ₃ : MeasureTheory.Measure Ω₃) [hμ₁ : MeasureTheory.IsProbabilityMeasure μ₁] [hμ₂ : MeasureTheory.IsProbabilityMeasure μ₂] [hμ₃ : MeasureTheory.IsProbabilityMeasure μ₃] :
∃ (A : Type (max u_1 u_2 u_3)) (x : MeasurableSpace A) (μA : MeasureTheory.Measure A) (X₁' : Aα) (X₂' : Aα) (X₃' : Aα), MeasureTheory.IsProbabilityMeasure μA ProbabilityTheory.iIndepFun (fun (x : Fin (Nat.succ 0).succ.succ) => mS) ![X₁', X₂', X₃'] μA Measurable X₁' Measurable X₂' Measurable X₃' ProbabilityTheory.IdentDistrib X₁' X₁ μA μ₁ ProbabilityTheory.IdentDistrib X₂' X₂ μA μ₂ ProbabilityTheory.IdentDistrib X₃' X₃ μA μ₃ FiniteRange X₁' FiniteRange X₂' FiniteRange X₃'

A version of independent_copies3_nondep that guarantees that the copies have FiniteRange if the original variables do.

theorem ProbabilityTheory.independent_copies4_nondep_finiteRange {α : Type u} [mS : MeasurableSpace α] [MeasurableSingletonClass α] {Ω₁ : Type u_1} {Ω₂ : Type u_2} {Ω₃ : Type u_3} {Ω₄ : Type u_4} [MeasurableSpace Ω₁] [MeasurableSpace Ω₂] [MeasurableSpace Ω₃] [MeasurableSpace Ω₄] {X₁ : Ω₁α} {X₂ : Ω₂α} {X₃ : Ω₃α} {X₄ : Ω₄α} (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₃ : Measurable X₃) (hX₄ : Measurable X₄) [FiniteRange X₁] [FiniteRange X₂] [FiniteRange X₃] [FiniteRange X₄] (μ₁ : MeasureTheory.Measure Ω₁) (μ₂ : MeasureTheory.Measure Ω₂) (μ₃ : MeasureTheory.Measure Ω₃) (μ₄ : MeasureTheory.Measure Ω₄) [hμ₁ : MeasureTheory.IsProbabilityMeasure μ₁] [hμ₂ : MeasureTheory.IsProbabilityMeasure μ₂] [hμ₃ : MeasureTheory.IsProbabilityMeasure μ₃] [hμ₄ : MeasureTheory.IsProbabilityMeasure μ₄] :
∃ (A : Type (max u_1 u_2 u_3 u_4)) (x : MeasurableSpace A) (μA : MeasureTheory.Measure A) (X₁' : Aα) (X₂' : Aα) (X₃' : Aα) (X₄' : Aα), MeasureTheory.IsProbabilityMeasure μA ProbabilityTheory.iIndepFun (fun (x : Fin (Nat.succ 0).succ.succ.succ) => mS) ![X₁', X₂', X₃', X₄'] μA Measurable X₁' Measurable X₂' Measurable X₃' Measurable X₄' ProbabilityTheory.IdentDistrib X₁' X₁ μA μ₁ ProbabilityTheory.IdentDistrib X₂' X₂ μA μ₂ ProbabilityTheory.IdentDistrib X₃' X₃ μA μ₃ ProbabilityTheory.IdentDistrib X₄' X₄ μA μ₄ FiniteRange X₁' FiniteRange X₂' FiniteRange X₃' FiniteRange X₄'

A version of independent_copies4_nondep that guarantees that the copies have FiniteRange if the original variables do.