theorem
ZModModule.exists_submodule_subset_card_le
{p : ℕ}
{G : Type u_1}
[AddCommGroup G]
(hp : Nat.Prime p)
[Module (ZMod p) G]
{k : ℕ}
(H : Submodule (ZMod p) G)
(hk : k ≤ Nat.card ↥H)
(h'k : k ≠ 0)
:
In an elementary abelian $p$-group, every finite subgroup $H$ contains a further subgroup of cardinality between $k$ and $pk$, if $k \leq |H|$.