theorem
Submodule.exists_equiv_fst_sndModFst
{B : Type u_1}
{F : Type u_2}
{R : Type u_3}
[DivisionRing R]
[AddCommGroup B]
[AddCommGroup F]
[Module R B]
[Module R F]
(E : Submodule R (B × F))
:
Given a submodule $E$ of $B \times F$, there is an equivalence $f : E \to B' \times F'$ given by the projections $E \to B$ and $E \to F$ "modulo" some $φ : B \to F$.