Documentation

PFR.Mathlib.LinearAlgebra.Basis.VectorSpace

theorem Submodule.exists_equiv_fst_sndModFst {B : Type u_1} {F : Type u_2} {R : Type u_3} [DivisionRing R] [AddCommGroup B] [AddCommGroup F] [Module R B] [Module R F] (E : Submodule R (B × F)) :
∃ (B' : Submodule R B) (F' : Submodule R F) (f : E ≃ₗ[R] B' × F') (φ : B →ₗ[R] F), (∀ (x : E), (f x).1 = (↑x).1 (f x).2 = (↑x).2 - φ (↑x).1) ∀ (x₁ : B') (x₂ : F'), (f.symm (x₁, x₂)) = (x₁, x₂ + φ x₁)

Given a submodule $E$ of $B \times F$, there is an equivalence $f : E \to B' \times F'$ given by the projections $E \to B$ and $E \to F$ "modulo" some $φ : B \to F$.