The homomorphism form of PFR #
Here we apply (improved) PFR to show that approximate homomorphisms f from a 2-group to a 2-group are close to actual homomorphisms. Here, approximate is in the sense that f(x+y)-f(x)-f(y) takes few values.
Main results #
goursat
: A convenient description of the subspaces of when are elementary abelian 2-groups.homomorphism_pfr
: If is a map between finite abelian elementary 2-groups such that takes at most values, then there is a homomorphism such that takes at most values.
theorem
hahn_banach
{G : Type u_1}
{G' : Type u_2}
[AddCommGroup G]
[AddCommGroup G']
[Module (ZMod 2) G]
[Module (ZMod 2) G']
(H₀ : AddSubgroup G)
(φ : ↥H₀ →+ G')
:
Let
theorem
homomorphism_pfr
{G : Type u_1}
{G' : Type u_2}
[AddCommGroup G]
[AddCommGroup G']
[Module (ZMod 2) G]
[Module (ZMod 2) G']
[Fintype G]
[Fintype G']
(f : G → G')
(S : Set G')
(hS : ∀ (x y : G), f (x + y) - f x - f y ∈ S)
:
Let