Documentation

PFR.HomPFR

The homomorphism form of PFR #

Here we apply (improved) PFR to show that approximate homomorphisms f from a 2-group to a 2-group are close to actual homomorphisms. Here, approximate is in the sense that f(x+y)-f(x)-f(y) takes few values.

Main results #

theorem hahn_banach {G : Type u_1} {G' : Type u_2} [AddCommGroup G] [AddCommGroup G'] [Module (ZMod 2) G] [Module (ZMod 2) G'] (H₀ : AddSubgroup G) (φ : H₀ →+ G') :
∃ (φ' : G →+ G'), ∀ (x : H₀), φ x = φ' x

Let H0 be a subgroup of G. Then every homomorphism ϕ:H0G can be extended to a homomorphism ϕ~:GG.

theorem goursat {G : Type u_1} {G' : Type u_2} [AddCommGroup G] [AddCommGroup G'] [Module (ZMod 2) G] [Module (ZMod 2) G'] (H : Submodule (ZMod 2) (G × G')) :
∃ (H₀ : Submodule (ZMod 2) G) (H₁ : Submodule (ZMod 2) G') (φ : G →+ G'), (∀ (x : G × G'), x H x.1 H₀ x.2 - φ x.1 H₁) Nat.card H = Nat.card H₀ * Nat.card H₁

Let H be a subgroup of G×G. Then there exists a subgroup H0 of G, a subgroup H1 of G, and a homomorphism ϕ:GG such that H:={(x,ϕ(x)+y):xH0,yH1}. In particular, |H|=|H0||H1|.

theorem homomorphism_pfr {G : Type u_1} {G' : Type u_2} [AddCommGroup G] [AddCommGroup G'] [Module (ZMod 2) G] [Module (ZMod 2) G'] [Fintype G] [Fintype G'] (f : GG') (S : Set G') (hS : ∀ (x y : G), f (x + y) - f x - f y S) :
∃ (φ : G →+ G') (T : Set G'), Nat.card T Nat.card S ^ 10 ∀ (x : G), f x - φ x T

Let f:GG be a function, and let S denote the set S:={f(x+y)f(x)f(y):x,yG}. Then there exists a homomorphism ϕ:GG such that |{f(x)ϕ(x)}||S|10.