Documentation

PFR.RhoFunctional

The rho functional #

Definition of the rho functional and basic facts

Main definitions: #

Main results #

noncomputable def rho_minus {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] (X : ΩG) (A : Finset G) :

For any $G$-valued random variable $X$, we define $\rho^-(X)$ to be the infimum of $D_{KL}(X \Vert U_A + T)$, where $U_A$ is uniform on $A$ and $T$ ranges over $G$-valued random variables independent of $U_A$.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    noncomputable def rho_plus {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] (X : ΩG) (A : Finset G) :

    For any $G$-valued random variable $X$, we define $\rho^+(X) := \rho^-(X) + \bbH(X) - \bbH(U_A)$.

    Equations
    Instances For
      theorem rho_minus_nonneg {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] (X : ΩG) (A : Finset G) :

      We have $\rho^-(X) \geq 0$.

      theorem rho_minus_of_subgroup {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] (H : AddSubgroup G) {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] (U : ΩG) (hunif : ProbabilityTheory.IsUniform (H) U MeasureTheory.volume) (A : Finset G) :
      rho_minus U A = ((Nat.card { x : G // x A })).log - (sSup (Set.range fun (t : G) => (Nat.card (A (t +ᵥ H.carrier))))).log

      If $H$ is a finite subgroup of $G$, then $\rho^-(U_H) = \log |A| - \log \max_t |A \cap (H+t)|$.

      theorem rho_plus_of_subgroup {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] (H : AddSubgroup G) {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] (U : ΩG) (hunif : ProbabilityTheory.IsUniform (H) U MeasureTheory.volume) (A : Finset G) :
      rho_plus U A = ((Nat.card H)).log - (sSup (Set.range fun (t : G) => (Nat.card (A (t +ᵥ H.carrier))))).log

      If $H$ is a finite subgroup of $G$, then $\rho^+(U_H) = \log |H| - \log \max_t |A \cap (H+t)|$.

      noncomputable def rho {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] (X : ΩG) (A : Finset G) :

      We define $\rho(X) := (\rho^+(X) + \rho^-(X))/2$.

      Equations
      Instances For
        theorem rho_of_uniform {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] (U : ΩG) (A : Finset G) (hunif : ProbabilityTheory.IsUniform (A) U MeasureTheory.volume) :
        rho U A = 0

        We have $\rho(U_A) = 0$.

        theorem rho_of_subgroup {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] (H : AddSubgroup G) {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] (U : ΩG) (hunif : ProbabilityTheory.IsUniform (H) U MeasureTheory.volume) (A : Finset G) (r : ) (hr : rho U A r) :
        ∃ (t : G), (Nat.card (A (t +ᵥ H.carrier))) 2 ^ (-r) * ((Nat.card { x : G // x A }) * (Nat.card H)) ^ (1 / 2) (Nat.card { x : G // x A }) 2 ^ (2 * r) * (Nat.card H) (Nat.card H) 2 ^ (2 * r) * (Nat.card { x : G // x A })

        If $H$ is a finite subgroup of $G$, and $\rho(U_H) \leq r$, then there exists $t$ such that $|A \cap (H+t)| \geq 2^{-r} \sqrt{|A||H|}$, and $|H|/|A|\in[2^{-2r},2^{2r}]$.

        theorem rho_of_translate {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] (X : ΩG) (A : Finset G) (s : G) :
        rho (fun (ω : Ω) => X ω + s) A = rho X A

        For any $s \in G$, $\rho(X+s) = \rho(X)$.

        \rho(X)$ depends continuously on the distribution of $X$.

        theorem rho_minus_of_sum {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] (X : ΩG) (Y : ΩG) (A : Finset G) (hindep : ProbabilityTheory.IndepFun X Y MeasureTheory.volume) :
        rho_minus (X + Y) A rho_minus X A

        If $X,Y$ are independent, one has $$ \rho^-(X+Y) \leq \rho^-(X)$$

        theorem rho_plus_of_sum {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] (X : ΩG) (Y : ΩG) (A : Finset G) (hindep : ProbabilityTheory.IndepFun X Y MeasureTheory.volume) :
        rho_plus (X + Y) A rho_plus X A + H[X + Y] - H[X]

        If $X,Y$ are independent, one has $$ \rho^+(X+Y) \leq \rho^+(X) + \bbH[X+Y] - \bbH[X]$$

        theorem rho_of_sum {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] (X : ΩG) (Y : ΩG) (A : Finset G) (hindep : ProbabilityTheory.IndepFun X Y MeasureTheory.volume) :
        rho (X + Y) A rho X A + (H[X + Y] - H[X]) / 2

        If $X,Y$ are independent, one has $$ \rho(X+Y) \leq \rho(X) + \frac{1}{2}( \bbH[X+Y] - \bbH[X] ).$$

        noncomputable def condRho {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] {Ω : Type u_1} {S : Type u_2} [MeasureTheory.MeasureSpace Ω] (X : ΩG) (Y : ΩS) (A : Finset G) :

        We define $\rho(X|Y) := \sum_y {\bf P}(Y=y) \rho(X|Y=y)$.

        Equations
        Instances For
          noncomputable def condRho_minus {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] {Ω : Type u_1} {S : Type u_2} [MeasureTheory.MeasureSpace Ω] (X : ΩG) (Y : ΩS) (A : Finset G) :
          Equations
          Instances For
            noncomputable def condRho_plus {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] {Ω : Type u_1} {S : Type u_2} [MeasureTheory.MeasureSpace Ω] (X : ΩG) (Y : ΩS) (A : Finset G) :
            Equations
            Instances For
              theorem condRho_of_translate {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] {Ω : Type u_1} {S : Type u_2} [MeasureTheory.MeasureSpace Ω] (X : ΩG) (Y : ΩS) (A : Finset G) (s : G) :
              condRho (fun (ω : Ω) => X ω + s) Y A = condRho X Y A

              For any $s\in G$, $\rho(X+s|Y)=\rho(X|Y)$.

              theorem condRho_of_injective {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] {Ω : Type u_1} {S : Type u_2} {T : Type u_3} [MeasureTheory.MeasureSpace Ω] (X : ΩG) (Y : ΩS) (A : Finset G) (f : ST) (hf : Function.Injective f) :
              condRho X (f Y) A = condRho X Y A

              If $f$ is injective, then $\rho(X|f(Y))=\rho(X|Y)$.

              theorem condRho_minus_le {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] {Ω : Type u_1} {S : Type u_2} [MeasureTheory.MeasureSpace Ω] [MeasurableSpace S] (X : ΩG) (Z : ΩS) (A : Finset G) :
              condRho_minus X Z A rho_minus X A + H[X] - H[X | Z]

              $$ \rho^-(X|Z) \leq \rho^-(X) + \bbH[X] - \bbH[X|Z]$$

              theorem condRho_plus_le {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] {Ω : Type u_1} {S : Type u_2} [MeasureTheory.MeasureSpace Ω] [MeasurableSpace S] (X : ΩG) (Z : ΩS) (A : Finset G) :

              $$ \rho^+(X|Z) \leq \rho^+(X)$$

              theorem condRho_le {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] {Ω : Type u_1} {S : Type u_2} [MeasureTheory.MeasureSpace Ω] [MeasurableSpace S] (X : ΩG) (Z : ΩS) (A : Finset G) :
              condRho X Z A rho X A + (H[X] - H[X | Z]) / 2

              $$ \rho(X|Z) \leq \rho(X) + \frac{1}{2}( \bbH[X] - \bbH[X|Z] )$$

              theorem rho_of_sum_le {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] (X : ΩG) (Y : ΩG) (A : Finset G) (hindep : ProbabilityTheory.IndepFun X Y MeasureTheory.volume) :
              rho (X + Y) A (rho X A + rho Y A + d[X # Y]) / 2

              If $X,Y$ are independent, then $$ \rho(X+Y) \leq \frac{1}{2}(\rho(X)+\rho(Y) + d[X;Y]).$$

              theorem condRho_of_sum_le {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] (X : ΩG) (Y : ΩG) (A : Finset G) (hindep : ProbabilityTheory.IndepFun X Y MeasureTheory.volume) :
              condRho X (X + Y) A (rho X A + rho Y A + d[X # Y]) / 2

              If $X,Y$ are independent, then $$ \rho(X | X+Y) \leq \frac{1}{2}(\rho(X)+\rho(Y) + d[X;Y]).$$

              noncomputable def phi {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] (X : ΩG) (Y : ΩG) (η : ) (A : Finset G) :
              Equations
              Instances For
                def phiMinimizes {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] {Ω : Type uG} [MeasureTheory.MeasureSpace Ω] (X : ΩG) (Y : ΩG) (η : ) (A : Finset G) :

                Given $G$-valued random variables $X,Y$, define $$ \phi[X;Y] := d[X;Y] + \eta(\rho(X) + \rho(Y))$$ and define a \emph{$\phi$-minimizer} to be a pair of random variables $X,Y$ which minimizes $\phi[X;Y]$.

                Equations
                Instances For
                  theorem phi_min_exists {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] (η : ) (A : Finset G) :
                  ∃ (Ω : Type uG) (x : MeasureTheory.MeasureSpace Ω) (X : ΩG) (Y : ΩG), phiMinimizes X Y η A

                  There exists a $\phi$-minimizer.

                  theorem I_one_le {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] (η : ) {Ω : Type uG} [MeasureTheory.MeasureSpace Ω] (X₁ : ΩG) (X₂ : ΩG) (X'₁ : ΩG) (X'₂ : ΩG) :
                  I[X₁ + X₂ : X'₁ + X₂|X₁ + X₂ + X'₁ + X'₂] 2 * η * d[X₁ # X₂]

                  $I_1\le 2\eta d[X_1;X_2]$

                  theorem dist_add_dist_eq {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] {Ω : Type uG} [MeasureTheory.MeasureSpace Ω] (X₁ : ΩG) (X₂ : ΩG) (X'₁ : ΩG) (X'₂ : ΩG) :
                  d[X₁ # X₁] + d[X₂ # X₂] = 2 * d[X₁ # X₂] + (I[X₁ + X₂ : X₁ + X'₁|X₁ + X₂ + X'₁ + X'₂] - I[X₁ + X₂ : X'₁ + X₂|X₁ + X₂ + X'₁ + X'₂])

                  $d[X_1;X_1]+d[X_2;X_2]= 2d[X_1;X_2]+(I_2-I_1)$.

                  theorem I_two_le {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] (η : ) {Ω : Type uG} [MeasureTheory.MeasureSpace Ω] (X₁ : ΩG) (X₂ : ΩG) (X'₁ : ΩG) (X'₂ : ΩG) :
                  I[X₁ + X₂ : X₁ + X'₁|X₁ + X₂ + X'₁ + X'₂] 2 * η * d[X₁ # X₂] + η / (1 - η) * (2 * η * d[X₁ # X₂] - I[X₁ + X₂ : X'₁ + X₂|X₁ + X₂ + X'₁ + X'₂])

                  $I_2\le 2\eta d[X_1;X_2] + \frac{\eta}{1-\eta}(2\eta d[X_1;X_2]-I_1)$.

                  theorem dist_le_of_sum_zero {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] (η : ) (A : Finset G) {Ω : Type uG} [MeasureTheory.MeasureSpace Ω] (X₁ : ΩG) (X₂ : ΩG) {Ω' : Type uG} [MeasureTheory.MeasureSpace Ω'] (T₁ : Ω'G) (T₂ : Ω'G) (T₃ : Ω'G) (hsum : T₁ + T₂ + T₃ = 0) :
                  d[X₁ # X₂] 3 * I[T₁ : T₂|T₃] + (2 * H[T₃] - H[T₁] - H[T₂]) + η * (condRho T₁ T₃ A + condRho T₂ T₃ A - rho X₁ A - rho X₂ A)

                  If $G$-valued random variables $T_1,T_2,T_3$ satisfy $T_1+T_2+T_3=0$, then $$d[X_1;X_2]\le 3\bbI[T_1:T_2\mid T_3] + (2\bbH[T_3]-\bbH[T_1]-\bbH[T_2])+ \eta(\rho(T_1|T_3)+\rho(T_2|T_3)-\rho(X_1)-\rho(X_2)).$$

                  theorem dist_le_of_sum_zero' {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] (η : ) (A : Finset G) {Ω : Type uG} [MeasureTheory.MeasureSpace Ω] (X₁ : ΩG) (X₂ : ΩG) {Ω' : Type uG} [MeasureTheory.MeasureSpace Ω'] (T₁ : Ω'G) (T₂ : Ω'G) (T₃ : Ω'G) (hsum : T₁ + T₂ + T₃ = 0) :
                  d[X₁ # X₂] I[T₁ : T₂] + I[T₁ : T₃] + I[T₂ : T₃] + η / 3 * (condRho T₁ T₂ A + condRho T₂ T₁ A - rho X₁ A - rho X₂ A + (condRho T₁ T₃ A + condRho T₃ T₁ A - rho X₁ A - rho X₂ A) + (condRho T₂ T₃ A + condRho T₃ T₂ A - rho X₁ A - rho X₂ A))

                  If $G$-valued random variables $T_1,T_2,T_3$ satisfy $T_1+T_2+T_3=0$, then $$d[X_1;X_2] \leq \sum_{1 \leq i < j \leq 3} \bbI[T_i:T_j] + \frac{\eta}{3} \sum_{1 \leq i < j \leq 3} (\rho(T_i|T_j) + \rho(T_j|T_i) -\rho(X_1)-\rho(X_2))$$

                  theorem condRho_sum_le {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] (A : Finset G) {Ω' : Type uG} [MeasureTheory.MeasureSpace Ω'] (Y₁ : Ω'G) (Y₂ : Ω'G) (Y₃ : Ω'G) (Y₄ : Ω'G) (hindep : ProbabilityTheory.iIndepFun (fun (x : Fin (Nat.succ 0).succ.succ.succ) => hGm) ![Y₁, Y₂, Y₃, Y₄] MeasureTheory.volume) :
                  let S := Y₁ + Y₂ + Y₃ + Y₄; let T₁ := Y₁ + Y₂; let T₂ := Y₁ + Y₃; condRho T₁ T₂ A + condRho T₂ T₁ A - (rho Y₁ A + rho Y₂ A + rho Y₃ A + rho Y₄ A) / 2 (d[Y₁ # Y₂] + d[Y₃ # Y₄] + d[Y₁ # Y₃] + d[Y₂ # Y₄]) / 2

                  For independent random variables $Y_1,Y_2,Y_3,Y_4$ over $G$, define $S:=Y_1+Y_2+Y_3+Y_4$, $T_1:=Y_1+Y_2$, $T_2:=Y_1+Y_3$. Then $$\rho(T_1|T_2,S)+\rho(T_2|T_1,S) - \frac{1}{2}\sum_{i} \rho(Y_i)\le \frac{1}{2}(d[Y_1;Y_2]+d[Y_3;Y_4]+d[Y_1;Y_3]+d[Y_2;Y_4]).$$

                  theorem condRho_sum_le' {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] (A : Finset G) {Ω' : Type uG} [MeasureTheory.MeasureSpace Ω'] (Y₁ : Ω'G) (Y₂ : Ω'G) (Y₃ : Ω'G) (Y₄ : Ω'G) (hindep : ProbabilityTheory.iIndepFun (fun (x : Fin (Nat.succ 0).succ.succ.succ) => hGm) ![Y₁, Y₂, Y₃, Y₄] MeasureTheory.volume) :
                  let S := Y₁ + Y₂ + Y₃ + Y₄; let T₁ := Y₁ + Y₂; let T₂ := Y₁ + Y₃; let T₃ := Y₂ + Y₃; condRho T₁ T₂ A + condRho T₂ T₁ A + condRho T₁ T₃ A + condRho T₃ T₁ A + condRho T₂ T₃ A + condRho T₃ T₂ A - 3 * (rho Y₁ A + rho Y₂ A + rho Y₃ A + rho Y₄ A) / 2 d[Y₁ # Y₂] + d[Y₁ # Y₃] + d[Y₁ # Y₄] + d[Y₂ # Y₃] + d[Y₂ # Y₄] + d[Y₃ # Y₄]

                  For independent random variables $Y_1,Y_2,Y_3,Y_4$ over $G$, define $T_1:=Y_1+Y_2,T_2:=Y_1+Y_3,T_3:=Y_2+Y_3$ and $S:=Y_1+Y_2+Y_3+Y_4$. Then $$\sum_{1 \leq i < j \leq 3} (\rho(T_i|T_j,S) + \rho(T_j|T_i,S) - \frac{1}{2}\sum_{i} \rho(Y_i))\le \sum_{1\leq i < j \leq 4}d[Y_i;Y_j]$$

                  theorem dist_of_min_eq_zero {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] (η : ) {Ω : Type uG} [MeasureTheory.MeasureSpace Ω] (X₁ : ΩG) (X₂ : ΩG) (hη' : η < 1 / 8) :
                  d[X₁ # X₂] = 0

                  If $X_1,X_2$ is a $\phi$-minimizer, then $d[X_1;X_2] = 0$.

                  theorem rho_PFR_conjecture {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] (η : ) (hη : η > 0) (hη' : η < 1 / 8) {Ω : Type uG} [MeasureTheory.MeasureSpace Ω] (Y₁ : ΩG) (Y₂ : ΩG) (A : Finset G) :
                  ∃ (H : AddSubgroup G) (Ω' : Type uG) (mΩ' : MeasureTheory.MeasureSpace Ω) (U : ΩG), MeasureTheory.IsProbabilityMeasure MeasureTheory.volume Measurable U ProbabilityTheory.IsUniform (H) U MeasureTheory.volume 2 * rho U A rho Y₁ A + rho Y₂ A + 8 * d[Y₁ # Y₂]

                  For any random variables $Y_1,Y_2$, there exist a subgroup $H$ such that $$ 2\rho(U_H) \leq \rho(Y_1) + \rho(Y_2) + 8 d[Y_1;Y_2].$$

                  theorem better_PFR_conjecture_aux {G : Type uG} [AddCommGroup G] {K : } {A : Set G} (h₀A : A.Nonempty) (hA : Nat.card (A + A) K * Nat.card A) :
                  ∃ (H : AddSubgroup G) (c : Set G), (Nat.card c) K ^ 4 * (Nat.card A) ^ (1 / 2) * (Nat.card H) ^ (-1 / 2) (Nat.card H) K ^ 8 * (Nat.card A) (Nat.card A) K ^ 8 * (Nat.card H) A c + H

                  If $|A+A| \leq K|A|$, then there exists a subgroup $H$ and $t\in G$ such that $|A \cap (H+t)| \geq K^{-4} \sqrt{|A||V|}$, and $|H|/|A|\in[K^{-8},K^8]$. \end{corollary}

                  theorem better_PFR_conjecture {G : Type uG} [AddCommGroup G] {K : } {A : Set G} (h₀A : A.Nonempty) (hA : Nat.card (A + A) K * Nat.card A) :
                  ∃ (H : AddSubgroup G) (c : Set G), (Nat.card c) < 2 * K ^ 9 Nat.card H Nat.card A A c + H

                  If $A \subset {\bf F}_2^n$ is finite non-empty with $|A+A| \leq K|A|$, then there exists a subgroup $H$ of ${\bf F}_2^n$ with $|H| \leq |A|$ such that $A$ can be covered by at most $2K^9$ translates of $H$.