Documentation

PFR.RhoFunctional

The rho functional #

Definition of the rho functional and basic facts

Main definitions: #

Main results #

noncomputable def rhoMinusSet {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] (X : ΩG) (A : Finset G) (μ : MeasureTheory.Measure Ω) :

The set of possible values of $D_{KL}(X \Vert U_A + T)$, where $U_A$ is uniform on $A$ and $T$ ranges over $G$-valued random variables independent of $U_A$. We also require an absolute continuity condition so that the KL divergence makes sense in .

To avoid universe issues, we express this using measures on G, but the equivalence with the above point of view follows from rhoMinus_le below.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem map_prod_uniformOn_ne_zero {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {A : Finset G} {y : G} (hA : A.Nonempty) {μ : MeasureTheory.Measure G} [MeasureTheory.IsProbabilityMeasure μ] (hμ : ∀ (x : G), μ {x} 0) :
    (MeasureTheory.Measure.map (Prod.fst + Prod.snd) (μ.prod (ProbabilityTheory.uniformOn A))) {y} 0
    theorem nonempty_rhoMinusSet {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} {X : ΩG} {A : Finset G} [MeasureTheory.IsZeroOrProbabilityMeasure μ] (hA : A.Nonempty) :
    (rhoMinusSet X A μ).Nonempty
    theorem nonneg_of_mem_rhoMinusSet {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} {X : ΩG} {A : Finset G} [MeasureTheory.IsZeroOrProbabilityMeasure μ] (hX : Measurable X) {x : } (hx : x rhoMinusSet X A μ) :
    0 x
    theorem rhoMinusSet_eq_of_identDistrib {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} {X : ΩG} {A : Finset G} {Ω' : Type u_2} [MeasurableSpace Ω'] {μ' : MeasureTheory.Measure Ω'} {X' : Ω'G} (h : ProbabilityTheory.IdentDistrib X X' μ μ') :
    rhoMinusSet X A μ = rhoMinusSet X' A μ'
    noncomputable def rhoMinus {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] (X : ΩG) (A : Finset G) (μ : MeasureTheory.Measure Ω) :

    For any $G$-valued random variable $X$, we define $\rho^-(X)$ to be the infimum of $D_{KL}(X \Vert U_A + T)$, where $U_A$ is uniform on $A$ and $T$ ranges over $G$-valued random variables independent of $U_A$.

    Equations
    Instances For

      For any $G$-valued random variable $X$, we define $\rho^-(X)$ to be the infimum of $D_{KL}(X \Vert U_A + T)$, where $U_A$ is uniform on $A$ and $T$ ranges over $G$-valued random variables independent of $U_A$.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        Pretty printer defined by notation3 command.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          Pretty printer defined by notation3 command.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            For any $G$-valued random variable $X$, we define $\rho^-(X)$ to be the infimum of $D_{KL}(X \Vert U_A + T)$, where $U_A$ is uniform on $A$ and $T$ ranges over $G$-valued random variables independent of $U_A$.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              theorem rhoMinus_eq_of_identDistrib {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} {X : ΩG} {A : Finset G} {Ω' : Type u_2} [MeasurableSpace Ω'] {X' : Ω'G} {μ' : MeasureTheory.Measure Ω'} (h : ProbabilityTheory.IdentDistrib X X' μ μ') :
              ρ⁻[X ; μ # A] = ρ⁻[X' ; μ' # A]
              theorem rhoMinus_le_def {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} {X : ΩG} {A : Finset G} [MeasureTheory.IsZeroOrProbabilityMeasure μ] (hX : Measurable X) {μ' : MeasureTheory.Measure G} [MeasureTheory.IsProbabilityMeasure μ'] (habs : ∀ (y : G), (MeasureTheory.Measure.map (Prod.fst + Prod.snd) (μ'.prod (ProbabilityTheory.uniformOn A))) {y} = 0(MeasureTheory.Measure.map X μ) {y} = 0) :
              ρ⁻[X ; μ # A] KL[X ; μ # Prod.fst + Prod.snd ; μ'.prod (ProbabilityTheory.uniformOn A)]
              theorem rhoMinus_le {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} {X : ΩG} {A : Finset G} [MeasureTheory.IsZeroOrProbabilityMeasure μ] (hX : Measurable X) (hA : A.Nonempty) {Ω' : Type u_2} [MeasurableSpace Ω'] {T : Ω'G} {U : Ω'G} {μ' : MeasureTheory.Measure Ω'} [MeasureTheory.IsProbabilityMeasure μ'] (hunif : ProbabilityTheory.IsUniform (↑A) U μ') (hT : Measurable T) (hU : Measurable U) (h_indep : ProbabilityTheory.IndepFun T U μ') (habs : ∀ (y : G), (MeasureTheory.Measure.map (T + U) μ') {y} = 0(MeasureTheory.Measure.map X μ) {y} = 0) :
              ρ⁻[X ; μ # A] KL[X ; μ # T + U ; μ']
              theorem rhoMinus_nonneg {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsZeroOrProbabilityMeasure μ] {X : ΩG} {A : Finset G} (hX : Measurable X) :
              0 ρ⁻[X ; μ # A]

              We have $\rho^-(X) \geq 0$.

              theorem rhoMinus_zero_measure {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} (hP : μ = 0) {X : ΩG} {A : Finset G} :
              ρ⁻[X ; μ # A] = 0
              theorem rhoMinus_continuous {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {A : Finset G} [TopologicalSpace G] [DiscreteTopology G] (hA : A.Nonempty) :
              Continuous fun (μ : MeasureTheory.ProbabilityMeasure G) => ρ⁻[id ; μ # A]
              noncomputable def rhoPlus {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] (X : ΩG) (A : Finset G) (μ : MeasureTheory.Measure Ω) :

              For any $G$-valued random variable $X$, we define $\rho^+(X) := \rho^-(X) + \bbH(X) - \bbH(U_A)$.

              Equations
              Instances For

                For any $G$-valued random variable $X$, we define $\rho^+(X) := \rho^-(X) + \bbH(X) - \bbH(U_A)$.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For

                  Pretty printer defined by notation3 command.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For

                    For any $G$-valued random variable $X$, we define $\rho^+(X) := \rho^-(X) + \bbH(X) - \bbH(U_A)$.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For

                      Pretty printer defined by notation3 command.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        theorem rhoPlus_continuous {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {A : Finset G} [TopologicalSpace G] [DiscreteTopology G] (hA : A.Nonempty) :
                        Continuous fun (μ : MeasureTheory.ProbabilityMeasure G) => ρ⁺[id ; μ # A]
                        theorem rhoPlus_eq_of_identDistrib {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} {X : ΩG} {A : Finset G} {Ω' : Type u_2} [MeasurableSpace Ω'] {X' : Ω'G} {μ' : MeasureTheory.Measure Ω'} (h : ProbabilityTheory.IdentDistrib X X' μ μ') :
                        ρ⁺[X ; μ # A] = ρ⁺[X' ; μ' # A]
                        theorem bddAbove_card_inter_add {G : Type uG} [AddCommGroup G] [Fintype G] {A : Set G} {H : Set G} :
                        BddAbove {x : | ∃ (t : G), Nat.card (A (t +ᵥ H)) = x}
                        theorem exists_mem_card_inter_add {G : Type uG} [AddCommGroup G] [Fintype G] (H : AddSubgroup G) {A : Set G} (hA : A.Nonempty) :
                        k > 0, k {x : | ∃ (t : G), Nat.card (A (t +ᵥ H)) = x}
                        theorem exists_card_inter_add_eq_sSup {G : Type uG} [AddCommGroup G] [Fintype G] (H : AddSubgroup G) {A : Set G} (hA : A.Nonempty) :
                        ∃ (t : G), Nat.card (A (t +ᵥ H)) = sSup {x : | ∃ (t : G), Nat.card (A (t +ᵥ H)) = x} 0 < Nat.card (A (t +ᵥ H))
                        theorem rhoMinus_of_subgroup {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] {H : AddSubgroup G} {U : ΩG} (hunif : ProbabilityTheory.IsUniform (↑H) U μ) {A : Finset G} (hA : A.Nonempty) (hU : Measurable U) :
                        ρ⁻[U ; μ # A] = Real.log (Nat.card { x : G // x A }) - Real.log (sSup {x : | ∃ (t : G), Nat.card (A (t +ᵥ H)) = x})

                        If $H$ is a finite subgroup of $G$, then $\rho^-(U_H) = \log |A| - \log \max_t |A \cap (H+t)|$.

                        theorem rhoPlus_of_subgroup {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] {H : AddSubgroup G} {U : ΩG} (hunif : ProbabilityTheory.IsUniform (↑H) U μ) {A : Finset G} (hA : A.Nonempty) (hU : Measurable U) :
                        ρ⁺[U ; μ # A] = Real.log (Nat.card H) - Real.log (sSup {x : | ∃ (t : G), Nat.card (A (t +ᵥ H)) = x})

                        If $H$ is a finite subgroup of $G$, then $\rho^+(U_H) = \log |H| - \log \max_t |A \cap (H+t)|$.

                        noncomputable def rho {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] (X : ΩG) (A : Finset G) (μ : MeasureTheory.Measure Ω) :

                        We define $\rho(X) := (\rho^+(X) + \rho^-(X))/2$.

                        Equations
                        • ρ[X ; μ # A] = (ρ⁻[X ; μ # A] + ρ⁺[X ; μ # A]) / 2
                        Instances For

                          We define $\rho(X) := (\rho^+(X) + \rho^-(X))/2$.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For

                            Pretty printer defined by notation3 command.

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For

                              We define $\rho(X) := (\rho^+(X) + \rho^-(X))/2$.

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For

                                Pretty printer defined by notation3 command.

                                Equations
                                • One or more equations did not get rendered due to their size.
                                Instances For
                                  theorem rho_eq_of_identDistrib {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} {X : ΩG} {A : Finset G} {Ω' : Type u_2} [MeasurableSpace Ω'] {X' : Ω'G} {μ' : MeasureTheory.Measure Ω'} (h : ProbabilityTheory.IdentDistrib X X' μ μ') :
                                  ρ[X ; μ # A] = ρ[X' ; μ' # A]
                                  theorem rho_of_uniform {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] {U : ΩG} {A : Finset G} (hunif : ProbabilityTheory.IsUniform (↑A) U μ) (hU : Measurable U) (hA : A.Nonempty) :
                                  ρ[U ; μ # A] = 0

                                  We have $\rho(U_A) = 0$.

                                  theorem rho_of_subgroup {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] {H : AddSubgroup G} {U : ΩG} (hunif : ProbabilityTheory.IsUniform (↑H) U μ) {A : Finset G} (hA : A.Nonempty) (hU : Measurable U) (r : ) (hr : ρ[U ; μ # A] r) :
                                  ∃ (t : G), Real.exp (-r) * ((Nat.card { x : G // x A }) * (Nat.card H)) ^ (1 / 2) (Nat.card (A (t +ᵥ H))) (Nat.card { x : G // x A }) Real.exp (2 * r) * (Nat.card H) (Nat.card H) Real.exp (2 * r) * (Nat.card { x : G // x A })

                                  If $H$ is a finite subgroup of $G$, and $\rho(U_H) \leq r$, then there exists $t$ such that $|A \cap (H+t)| \geq e^{-r} \sqrt{|A||H|}$, and $|H|/|A| \in [e^{-2r}, e^{2r}]$.

                                  theorem rho_of_submodule {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] [Module (ZMod 2) G] {H : Submodule (ZMod 2) G} {U : ΩG} (hunif : ProbabilityTheory.IsUniform (↑H) U μ) {A : Finset G} (hA : A.Nonempty) (hU : Measurable U) (r : ) (hr : ρ[U ; μ # A] r) :
                                  ∃ (t : G), Real.exp (-r) * ((Nat.card { x : G // x A }) * (Nat.card H)) ^ (1 / 2) (Nat.card (A (t +ᵥ H))) (Nat.card { x : G // x A }) Real.exp (2 * r) * (Nat.card H) (Nat.card H) Real.exp (2 * r) * (Nat.card { x : G // x A })

                                  If $H$ is a finite subgroup of $G$, and $\rho(U_H) \leq r$, then there exists $t$ such that $|A \cap (H+t)| \geq e^{-r} \sqrt{|A||H|}$, and $|H|/|A| \in [e^{-2r}, e^{2r}]$.

                                  theorem rho_continuous {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] [TopologicalSpace G] [DiscreteTopology G] [BorelSpace G] {A : Finset G} (hA : A.Nonempty) :
                                  Continuous fun (μ : MeasureTheory.ProbabilityMeasure G) => ρ[id ; μ # A]

                                  \rho(X)$ depends continuously on the distribution of $X$.

                                  theorem tendsto_rho_probabilityMeasure {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] {A : Finset G} {α : Type u_2} {l : Filter α} [TopologicalSpace Ω] [BorelSpace Ω] [TopologicalSpace G] [BorelSpace G] [DiscreteTopology G] {X : ΩG} (hX : Continuous X) (hA : A.Nonempty) {μ : αMeasureTheory.ProbabilityMeasure Ω} {ν : MeasureTheory.ProbabilityMeasure Ω} (hμ : Filter.Tendsto μ l (nhds ν)) :
                                  Filter.Tendsto (fun (n : α) => ρ[X ; (μ n) # A]) l (nhds ρ[X ; ν # A])
                                  theorem rhoMinus_of_sum {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} {X : ΩG} {Y : ΩG} {A : Finset G} [MeasureTheory.IsZeroOrProbabilityMeasure μ] (hX : Measurable X) (hY : Measurable Y) (hA : A.Nonempty) (h_indep : ProbabilityTheory.IndepFun X Y μ) :
                                  ρ⁻[X + Y ; μ # A] ρ⁻[X ; μ # A]

                                  If $X,Y$ are independent, one has $$ \rho^-(X+Y) \leq \rho^-(X)$$

                                  theorem rhoPlus_of_sum {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} {X : ΩG} {Y : ΩG} {A : Finset G} [MeasureTheory.IsZeroOrProbabilityMeasure μ] (hX : Measurable X) (hY : Measurable Y) (hA : A.Nonempty) (h_indep : ProbabilityTheory.IndepFun X Y μ) :
                                  ρ⁺[X + Y ; μ # A] ρ⁺[X ; μ # A] + H[X + Y ; μ] - H[X ; μ]

                                  If $X,Y$ are independent, one has $$ \rho^+(X+Y) \leq \rho^+(X) + \bbH[X+Y] - \bbH[X]$$

                                  theorem rho_of_sum {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} {X : ΩG} {Y : ΩG} {A : Finset G} [MeasureTheory.IsZeroOrProbabilityMeasure μ] (hX : Measurable X) (hY : Measurable Y) (hA : A.Nonempty) (h_indep : ProbabilityTheory.IndepFun X Y μ) :
                                  ρ[X + Y ; μ # A] ρ[X ; μ # A] + (H[X + Y ; μ] - H[X ; μ]) / 2

                                  If $X,Y$ are independent, one has $$ \rho(X+Y) \leq \rho(X) + \frac{1}{2}( \bbH[X+Y] - \bbH[X] ).$$

                                  theorem rho_of_translate {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} {X : ΩG} {A : Finset G} [MeasureTheory.IsZeroOrProbabilityMeasure μ] (hX : Measurable X) (hA : A.Nonempty) (s : G) :
                                  ρ[fun (ω : Ω) => X ω + s ; μ # A] = ρ[X ; μ # A]
                                  noncomputable def condRho {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] {S : Type u_2} (X : ΩG) (Y : ΩS) (A : Finset G) (μ : MeasureTheory.Measure Ω) :

                                  We define $\rho(X|Y) := \sum_y {\bf P}(Y=y) \rho(X|Y=y)$.

                                  Equations
                                  Instances For
                                    noncomputable def condRhoMinus {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] {S : Type u_2} (X : ΩG) (Y : ΩS) (A : Finset G) (μ : MeasureTheory.Measure Ω) :

                                    Average of rhoMinus along the fibers

                                    Equations
                                    Instances For
                                      noncomputable def condRhoPlus {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] {S : Type u_2} (X : ΩG) (Y : ΩS) (A : Finset G) (μ : MeasureTheory.Measure Ω) :

                                      Average of rhoPlus along the fibers

                                      Equations
                                      Instances For

                                        Pretty printer defined by notation3 command.

                                        Equations
                                        • One or more equations did not get rendered due to their size.
                                        Instances For

                                          We define $\rho(X|Y) := \sum_y {\bf P}(Y=y) \rho(X|Y=y)$.

                                          Equations
                                          • One or more equations did not get rendered due to their size.
                                          Instances For

                                            We define $\rho(X|Y) := \sum_y {\bf P}(Y=y) \rho(X|Y=y)$.

                                            Equations
                                            • One or more equations did not get rendered due to their size.
                                            Instances For

                                              Pretty printer defined by notation3 command.

                                              Equations
                                              • One or more equations did not get rendered due to their size.
                                              Instances For

                                                Average of rhoMinus along the fibers

                                                Equations
                                                • One or more equations did not get rendered due to their size.
                                                Instances For

                                                  Pretty printer defined by notation3 command.

                                                  Equations
                                                  • One or more equations did not get rendered due to their size.
                                                  Instances For

                                                    Pretty printer defined by notation3 command.

                                                    Equations
                                                    • One or more equations did not get rendered due to their size.
                                                    Instances For

                                                      Average of rhoPlus along the fibers

                                                      Equations
                                                      • One or more equations did not get rendered due to their size.
                                                      Instances For
                                                        theorem condRho_of_translate {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} {X : ΩG} {A : Finset G} {S : Type u_2} {Y : ΩS} (hX : Measurable X) (hA : A.Nonempty) (s : G) :
                                                        ρ[fun (ω : Ω) => X ω + s | Y ; μ # A] = ρ[X | Y ; μ # A]

                                                        For any $s\in G$, $\rho(X+s|Y)=\rho(X|Y)$.

                                                        theorem condRho_of_injective {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} (X : ΩG) {S : Type u_2} {T : Type u_3} (Y : ΩS) {A : Finset G} {f : ST} (hf : Function.Injective f) :
                                                        ρ[X | f Y ; μ # A] = ρ[X | Y ; μ # A]

                                                        If $f$ is injective, then $\rho(X|f(Y))=\rho(X|Y)$.

                                                        theorem condRho_eq_of_identDistrib {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} {A : Finset G} {S : Type u_2} [MeasurableSpace S] [MeasurableSingletonClass S] {Y : ΩG} {W : ΩS} {Ω' : Type u_3} [MeasurableSpace Ω'] {μ' : MeasureTheory.Measure Ω'} {Y' : Ω'G} {W' : Ω'S} (hY : Measurable Y) (hW : Measurable W) (hY' : Measurable Y') (hW' : Measurable W') (h : ProbabilityTheory.IdentDistrib (⟨Y, W⟩) (⟨Y', W'⟩) μ μ') :
                                                        ρ[Y | W ; μ # A] = ρ[Y' | W' ; μ' # A]
                                                        theorem condRhoMinus_le {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} {X : ΩG} {A : Finset G} [MeasureTheory.IsZeroOrProbabilityMeasure μ] {S : Type u_2} [MeasurableSpace S] [Fintype S] [MeasurableSingletonClass S] {Z : ΩS} (hX : Measurable X) (hZ : Measurable Z) (hA : A.Nonempty) :
                                                        ρ⁻[X | Z ; μ # A] ρ⁻[X ; μ # A] + H[X ; μ] - H[X | Z ; μ]

                                                        $$ \rho^-(X|Z) \leq \rho^-(X) + \bbH[X] - \bbH[X|Z]$$

                                                        theorem condRhoPlus_le {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} {X : ΩG} {A : Finset G} [MeasureTheory.IsProbabilityMeasure μ] {S : Type u_2} [MeasurableSpace S] [Fintype S] [MeasurableSingletonClass S] {Z : ΩS} (hX : Measurable X) (hZ : Measurable Z) (hA : A.Nonempty) :
                                                        ρ⁺[X | Z ; μ # A] ρ⁺[X ; μ # A]

                                                        $$ \rho^+(X|Z) \leq \rho^+(X)$$

                                                        theorem condRho_eq {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} {X : ΩG} {A : Finset G} {S : Type u_2} [Fintype S] {Z : ΩS} :
                                                        ρ[X | Z ; μ # A] = (ρ⁻[X | Z ; μ # A] + ρ⁺[X | Z ; μ # A]) / 2
                                                        theorem condRho_le {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} {X : ΩG} {A : Finset G} [MeasureTheory.IsProbabilityMeasure μ] {S : Type u_2} [MeasurableSpace S] [Fintype S] [MeasurableSingletonClass S] {Z : ΩS} (hX : Measurable X) (hZ : Measurable Z) (hA : A.Nonempty) :
                                                        ρ[X | Z ; μ # A] ρ[X ; μ # A] + (H[X ; μ] - H[X | Z ; μ]) / 2

                                                        $$ \rho(X|Z) \leq \rho(X) + \frac{1}{2}( \bbH[X] - \bbH[X|Z] )$$

                                                        theorem condRho_prod_eq_sum {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} {X : ΩG} {A : Finset G} [MeasureTheory.IsProbabilityMeasure μ] {S : Type u_2} [MeasurableSpace S] [Fintype S] [MeasurableSingletonClass S] {Z : ΩS} {T : ΩS} (hZ : Measurable Z) (hT : Measurable T) :
                                                        ρ[X | Z, T ; μ # A] = g : S, (μ (T ⁻¹' {g})).toReal * ρ[X | Z ; ProbabilityTheory.cond μ (T ⁻¹' {g}) # A]
                                                        theorem condRho_prod_le {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} {X : ΩG} {A : Finset G} [MeasureTheory.IsProbabilityMeasure μ] {S : Type u_2} [MeasurableSpace S] [Fintype S] [MeasurableSingletonClass S] {Z : ΩS} {T : ΩS} (hX : Measurable X) (hZ : Measurable Z) (hT : Measurable T) (hA : A.Nonempty) :
                                                        ρ[X | Z, T ; μ # A] ρ[X | T ; μ # A] + (H[X | T ; μ] - H[X | Z, T ; μ]) / 2

                                                        $$ \rho(X|Z) \leq \rho(X) + \frac{1}{2}( \bbH[X] - \bbH[X|Z] )$$, conditional version

                                                        theorem condRho_prod_eq_of_indepFun {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} {A : Finset G} [MeasureTheory.IsProbabilityMeasure μ] {X : ΩG} {S : Type u_2} [Fintype S] [MeasurableSpace S] [MeasurableSingletonClass S] {W : ΩS} {W' : ΩS} (hX : Measurable X) (hW : Measurable W) (hW' : Measurable W') (h : ProbabilityTheory.IndepFun (⟨X, W⟩) W' μ) :
                                                        ρ[X | W, W' ; μ # A] = ρ[X | W ; μ # A]
                                                        theorem rho_of_sum_le {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} {X : ΩG} {Y : ΩG} {A : Finset G} [Module (ZMod 2) G] [MeasureTheory.IsZeroOrProbabilityMeasure μ] (hX : Measurable X) (hY : Measurable Y) (hA : A.Nonempty) (h_indep : ProbabilityTheory.IndepFun X Y μ) :
                                                        ρ[X + Y ; μ # A] (ρ[X ; μ # A] + ρ[Y ; μ # A] + d[X ; μ # Y ; μ]) / 2

                                                        If $X,Y$ are independent, then $$ \rho(X+Y) \leq \frac{1}{2}(\rho(X)+\rho(Y) + d[X;Y]).$$

                                                        theorem condRho_of_sum_le {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} {X : ΩG} {Y : ΩG} {A : Finset G} [Module (ZMod 2) G] [MeasureTheory.IsProbabilityMeasure μ] (hX : Measurable X) (hY : Measurable Y) (hA : A.Nonempty) (h_indep : ProbabilityTheory.IndepFun X Y μ) :
                                                        ρ[X | X + Y ; μ # A] (ρ[X ; μ # A] + ρ[Y ; μ # A] + d[X ; μ # Y ; μ]) / 2

                                                        If $X,Y$ are independent, then $$ \rho(X | X+Y) \leq \frac{1}{2}(\rho(X)+\rho(Y) + d[X;Y]).$$

                                                        noncomputable def phi {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] {Ω : Type u_2} [MeasurableSpace Ω] (X : ΩG) (Y : ΩG) (η : ) (A : Finset G) (μ : MeasureTheory.Measure Ω) :

                                                        Given $G$-valued random variables $X,Y$, define $$ \phi[X;Y] := d[X;Y] + \eta(\rho(X) + \rho(Y))$$.

                                                        Equations
                                                        • phi X Y η A μ = d[X ; μ # Y ; μ] + η * (ρ[X ; μ # A] + ρ[Y ; μ # A])
                                                        Instances For
                                                          def phiMinimizes {G : Type uG} [AddCommGroup G] [hGm : MeasurableSpace G] {Ω : Type u_2} [MeasurableSpace Ω] (X : ΩG) (Y : ΩG) (η : ) (A : Finset G) (μ : MeasureTheory.Measure Ω) :

                                                          Given $G$-valued random variables $X,Y$, define $$ \phi[X;Y] := d[X;Y] + \eta(\rho(X) + \rho(Y))$$ and define a \emph{$\phi$-minimizer} to be a pair of random variables $X,Y$ which minimizes $\phi[X;Y]$.

                                                          Equations
                                                          • One or more equations did not get rendered due to their size.
                                                          Instances For
                                                            theorem phiMinimizes_of_identDistrib {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] {Ω' : Type u_2} [MeasureTheory.MeasureSpace Ω'] {X : ΩG} {Y : ΩG} {X' : Ω'G} {Y' : Ω'G} {η : } {A : Finset G} (h_min : phiMinimizes X Y η A MeasureTheory.volume) (h₁ : ProbabilityTheory.IdentDistrib X X' MeasureTheory.volume MeasureTheory.volume) (h₂ : ProbabilityTheory.IdentDistrib Y Y' MeasureTheory.volume MeasureTheory.volume) :
                                                            phiMinimizes X' Y' η A MeasureTheory.volume
                                                            theorem phiMinimizes_comm {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {X : ΩG} {Y : ΩG} {η : } {A : Finset G} (h_min : phiMinimizes X Y η A MeasureTheory.volume) :
                                                            phiMinimizes Y X η A MeasureTheory.volume
                                                            theorem phi_min_exists {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {A : Finset G} {η : } (hA : A.Nonempty) :
                                                            ∃ (μ : MeasureTheory.Measure (G × G)), MeasureTheory.IsProbabilityMeasure μ phiMinimizes Prod.fst Prod.snd η A μ

                                                            There exists a $\phi$-minimizer.

                                                            theorem le_rdist_of_phiMinimizes {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] {A : Finset G} {η : } {X₁ : ΩG} {X₂ : ΩG} (h_min : phiMinimizes X₁ X₂ η A MeasureTheory.volume) {Ω₁ : Type u_2} {Ω₂ : Type u_3} [MeasurableSpace Ω₁] [MeasurableSpace Ω₂] {μ₁ : MeasureTheory.Measure Ω₁} {μ₂ : MeasureTheory.Measure Ω₂} [MeasureTheory.IsProbabilityMeasure μ₁] [MeasureTheory.IsProbabilityMeasure μ₂] {X₁' : Ω₁G} {X₂' : Ω₂G} (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') :
                                                            d[X₁ # X₂] - η * (ρ[X₁' ; μ₁ # A] - ρ[X₁ # A]) - η * (ρ[X₂' ; μ₂ # A] - ρ[X₂ # A]) d[X₁' ; μ₁ # X₂' ; μ₂]
                                                            theorem le_rdist_of_phiMinimizes' {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] {A : Finset G} {η : } {X₁ : ΩG} {X₂ : ΩG} (h_min : phiMinimizes X₁ X₂ η A MeasureTheory.volume) {Ω₁ : Type u_2} {Ω₂ : Type u_3} [MeasurableSpace Ω₁] [MeasurableSpace Ω₂] {μ₁ : MeasureTheory.Measure Ω₁} {μ₂ : MeasureTheory.Measure Ω₂} [MeasureTheory.IsProbabilityMeasure μ₁] [MeasureTheory.IsProbabilityMeasure μ₂] {X₁' : Ω₁G} {X₂' : Ω₂G} (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') :
                                                            d[X₁ # X₂] d[X₁' ; μ₁ # X₂' ; μ₂] + η * (ρ[X₁' ; μ₁ # A] - ρ[X₁ # A]) + η * (ρ[X₂' ; μ₂ # A] - ρ[X₂ # A])
                                                            theorem condRho_le_condRuzsaDist_of_phiMinimizes {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] {A : Finset G} {η : } {X₁ : ΩG} {X₂ : ΩG} {X₁' : ΩG} {X₂' : ΩG} [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {S : Type u_2} {T : Type u_3} [Fintype S] [MeasurableSpace S] [MeasurableSingletonClass S] [Fintype T] [MeasurableSpace T] [MeasurableSingletonClass T] (h : phiMinimizes X₁ X₂ η A MeasureTheory.volume) (h1 : Measurable X₁') (h2 : Measurable X₂') {Z : ΩS} {W : ΩT} (hZ : Measurable Z) (hW : Measurable W) :
                                                            d[X₁ # X₂] - η * (ρ[X₁' | Z # A] - ρ[X₁ # A]) - η * (ρ[X₂' | W # A] - ρ[X₂ # A]) d[X₁' | Z # X₂' | W]
                                                            theorem I_one_le {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] {A : Finset G} {η : } (hη : 0 < η) {X₁ : ΩG} {X₂ : ΩG} {X₁' : ΩG} {X₂' : ΩG} (h_min : phiMinimizes X₁ X₂ η A MeasureTheory.volume) (h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume) (h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume) (h_indep : ProbabilityTheory.iIndepFun (fun (x : Fin (Nat.succ 0).succ.succ.succ) => hGm) ![X₁, X₂, X₁', X₂'] MeasureTheory.volume) (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [Module (ZMod 2) G] (hA : A.Nonempty) :
                                                            I[X₁ + X₂ : X₁' + X₂|X₁ + X₂ + X₁' + X₂'] 2 * η * d[X₁ # X₂]

                                                            $I_1\le 2\eta d[X_1;X_2]$

                                                            theorem I_two_aux {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] {X₁ : ΩG} {X₂ : ΩG} {X₁' : ΩG} {X₂' : ΩG} (h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume) (h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume) (h_indep : ProbabilityTheory.iIndepFun (fun (x : Fin (Nat.succ 0).succ.succ.succ) => hGm) ![X₁, X₂, X₁', X₂'] MeasureTheory.volume) (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [Module (ZMod 2) G] :
                                                            d[X₁ # X₁] + d[X₂ # X₂] = d[X₁ + X₂' # X₂ + X₁'] + d[X₁ | X₁ + X₂' # X₂ | X₂ + X₁'] + I[X₁ + X₂ : X₁ + X₁'|X₁ + X₂ + X₁' + X₂']
                                                            theorem rdist_add_rdist_eq {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] {X₁ : ΩG} {X₂ : ΩG} {X₁' : ΩG} {X₂' : ΩG} (h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume) (h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume) (h_indep : ProbabilityTheory.iIndepFun (fun (x : Fin (Nat.succ 0).succ.succ.succ) => hGm) ![X₁, X₂, X₁', X₂'] MeasureTheory.volume) (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [Module (ZMod 2) G] :
                                                            d[X₁ # X₁] + d[X₂ # X₂] = 2 * d[X₁ # X₂] + (I[X₁ + X₂ : X₁ + X₁'|X₁ + X₂ + X₁' + X₂'] - I[X₁ + X₂ : X₁' + X₂|X₁ + X₂ + X₁' + X₂'])

                                                            $d[X_1;X_1]+d[X_2;X_2]= 2d[X_1;X_2]+(I_2-I_1)$.

                                                            theorem I_two_aux' {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] {X₁ : ΩG} {X₂ : ΩG} {X₁' : ΩG} {X₂' : ΩG} (h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume) (h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume) (h_indep : ProbabilityTheory.iIndepFun (fun (x : Fin (Nat.succ 0).succ.succ.succ) => hGm) ![X₁, X₂, X₁', X₂'] MeasureTheory.volume) (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [Module (ZMod 2) G] :
                                                            2 * d[X₁ # X₂] = d[X₁ + X₁' # X₂ + X₂'] + d[X₁ | X₁ + X₁' # X₂ | X₂ + X₂'] + I[X₁ + X₂ : X₁ + X₁'|X₁ + X₂ + X₁' + X₂']
                                                            theorem I_two_le {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] {A : Finset G} {η : } (hη : 0 < η) {X₁ : ΩG} {X₂ : ΩG} {X₁' : ΩG} {X₂' : ΩG} (h_min : phiMinimizes X₁ X₂ η A MeasureTheory.volume) (h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume) (h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume) (h_indep : ProbabilityTheory.iIndepFun (fun (x : Fin (Nat.succ 0).succ.succ.succ) => hGm) ![X₁, X₂, X₁', X₂'] MeasureTheory.volume) (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [Module (ZMod 2) G] (hA : A.Nonempty) (h'η : η < 1) :
                                                            I[X₁ + X₂ : X₁ + X₁'|X₁ + X₂ + X₁' + X₂'] 2 * η * d[X₁ # X₂] + η / (1 - η) * (2 * η * d[X₁ # X₂] - I[X₁ + X₂ : X₁' + X₂|X₁ + X₂ + X₁' + X₂'])

                                                            $I_2\le 2\eta d[X_1;X_2] + \frac{\eta}{1-\eta}(2\eta d[X_1;X_2]-I_1)$.

                                                            theorem dist_le_of_sum_zero {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] {A : Finset G} {η : } {X₁ : ΩG} {X₂ : ΩG} (h_min : phiMinimizes X₁ X₂ η A MeasureTheory.volume) [Module (ZMod 2) G] {Ω' : Type u_2} [MeasurableSpace Ω'] {μ : MeasureTheory.Measure Ω'} [MeasureTheory.IsProbabilityMeasure μ] {T₁ : Ω'G} {T₂ : Ω'G} {T₃ : Ω'G} (hsum : T₁ + T₂ + T₃ = 0) (hT₁ : Measurable T₁) (hT₂ : Measurable T₂) (hT₃ : Measurable T₃) :
                                                            d[X₁ # X₂] 3 * I[T₁ : T₂ ; μ] + (2 * H[T₃ ; μ] - H[T₁ ; μ] - H[T₂ ; μ]) + η * (ρ[T₁ | T₃ ; μ # A] + ρ[T₂ | T₃ ; μ # A] - ρ[X₁ # A] - ρ[X₂ # A])

                                                            If $G$-valued random variables $T_1,T_2,T_3$ satisfy $T_1+T_2+T_3=0$, then $$d[X_1;X_2]\le 3\bbI[T_1:T_2\mid T_3] + (2\bbH[T_3]-\bbH[T_1]-\bbH[T_2])+ \eta(\rho(T_1|T_3)+\rho(T_2|T_3)-\rho(X_1)-\rho(X_2)).$$

                                                            theorem dist_le_of_sum_zero_cond {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] {A : Finset G} {η : } {X₁ : ΩG} {X₂ : ΩG} (h_min : phiMinimizes X₁ X₂ η A MeasureTheory.volume) [Module (ZMod 2) G] {Ω' : Type u_2} [MeasureTheory.MeasureSpace Ω'] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {T₁ : Ω'G} {T₂ : Ω'G} {T₃ : Ω'G} {S : Ω'G} (hsum : T₁ + T₂ + T₃ = 0) (hT₁ : Measurable T₁) (hT₂ : Measurable T₂) (hT₃ : Measurable T₃) (hS : Measurable S) :
                                                            d[X₁ # X₂] 3 * I[T₁ : T₂|S] + (2 * H[T₃ | S] - H[T₁ | S] - H[T₂ | S]) + η * (ρ[T₁ | T₃, S # A] + ρ[T₂ | T₃, S # A] - ρ[X₁ # A] - ρ[X₂ # A])

                                                            If $G$-valued random variables $T_1,T_2,T_3$ satisfy $T_1+T_2+T_3=0$, then $$d[X_1;X_2]\le 3\bbI[T_1:T_2\mid T_3] + (2\bbH[T_3]-\bbH[T_1]-\bbH[T_2])+ \eta(\rho(T_1|T_3)+\rho(T_2|T_3)-\rho(X_1)-\rho(X_2)).$$

                                                            theorem dist_le_of_sum_zero' {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] {A : Finset G} {η : } {X₁ : ΩG} {X₂ : ΩG} (h_min : phiMinimizes X₁ X₂ η A MeasureTheory.volume) [Module (ZMod 2) G] {Ω' : Type u_2} [MeasureTheory.MeasureSpace Ω'] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {T₁ : Ω'G} {T₂ : Ω'G} {T₃ : Ω'G} (hsum : T₁ + T₂ + T₃ = 0) (hT₁ : Measurable T₁) (hT₂ : Measurable T₂) (hT₃ : Measurable T₃) :
                                                            d[X₁ # X₂] I[T₁ : T₂] + I[T₁ : T₃] + I[T₂ : T₃] + η / 3 * (ρ[T₁ | T₂ # A] + ρ[T₂ | T₁ # A] - ρ[X₁ # A] - ρ[X₂ # A] + (ρ[T₁ | T₃ # A] + ρ[T₃ | T₁ # A] - ρ[X₁ # A] - ρ[X₂ # A]) + (ρ[T₂ | T₃ # A] + ρ[T₃ | T₂ # A] - ρ[X₁ # A] - ρ[X₂ # A]))

                                                            If $G$-valued random variables $T_1,T_2,T_3$ satisfy $T_1+T_2+T_3=0$, then $$d[X_1;X_2] \leq \sum_{1 \leq i < j \leq 3} \bbI[T_i:T_j]

                                                            • \frac{\eta}{3} \sum_{1 \leq i < j \leq 3} (\rho(T_i|T_j) + \rho(T_j|T_i) -\rho(X_1)-\rho(X_2))$$
                                                            theorem dist_le_of_sum_zero_cond' {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] {A : Finset G} {η : } {X₁ : ΩG} {X₂ : ΩG} (h_min : phiMinimizes X₁ X₂ η A MeasureTheory.volume) [Module (ZMod 2) G] {Ω' : Type u_2} [MeasureTheory.MeasureSpace Ω'] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {T₁ : Ω'G} {T₂ : Ω'G} {T₃ : Ω'G} (S : Ω'G) (hsum : T₁ + T₂ + T₃ = 0) (hT₁ : Measurable T₁) (hT₂ : Measurable T₂) (hT₃ : Measurable T₃) (hS : Measurable S) :
                                                            d[X₁ # X₂] I[T₁ : T₂|S] + I[T₁ : T₃|S] + I[T₂ : T₃|S] + η / 3 * (ρ[T₁ | T₂, S # A] + ρ[T₂ | T₁, S # A] - ρ[X₁ # A] - ρ[X₂ # A] + (ρ[T₁ | T₃, S # A] + ρ[T₃ | T₁, S # A] - ρ[X₁ # A] - ρ[X₂ # A]) + (ρ[T₂ | T₃, S # A] + ρ[T₃ | T₂, S # A] - ρ[X₁ # A] - ρ[X₂ # A]))

                                                            If $G$-valued random variables $T_1,T_2,T_3$ satisfy $T_1+T_2+T_3=0$, then $$d[X_1;X_2] \leq \sum_{1 \leq i < j \leq 3} \bbI[T_i:T_j]

                                                            • \frac{\eta}{3} \sum_{1 \leq i < j \leq 3} (\rho(T_i|T_j) + \rho(T_j|T_i) -\rho(X_1)-\rho(X_2))$$
                                                            theorem new_gen_ineq_aux1 {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] {A : Finset G} [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [Module (ZMod 2) G] {Y₁ : ΩG} {Y₂ : ΩG} {Y₃ : ΩG} {Y₄ : ΩG} (hY₁ : Measurable Y₁) (hY₂ : Measurable Y₂) (hY₃ : Measurable Y₃) (hY₄ : Measurable Y₄) (h_indep : ProbabilityTheory.iIndepFun (fun (x : Fin (Nat.succ 0).succ.succ.succ) => hGm) ![Y₁, Y₂, Y₃, Y₄] MeasureTheory.volume) (hA : A.Nonempty) :
                                                            ρ[Y₁ + Y₂ | Y₁ + Y₃, Y₁ + Y₂ + Y₃ + Y₄ # A] (ρ[Y₁ # A] + ρ[Y₂ # A] + ρ[Y₃ # A] + ρ[Y₄ # A]) / 4 + (d[Y₁ # Y₂] + d[Y₃ # Y₄]) / 4 + (d[Y₁ + Y₂ # Y₃ + Y₄] + I[Y₁ + Y₂ : Y₁ + Y₃|Y₁ + Y₂ + Y₃ + Y₄]) / 2
                                                            theorem new_gen_ineq_aux2 {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] {A : Finset G} [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [Module (ZMod 2) G] {Y₁ : ΩG} {Y₂ : ΩG} {Y₃ : ΩG} {Y₄ : ΩG} (hY₁ : Measurable Y₁) (hY₂ : Measurable Y₂) (hY₃ : Measurable Y₃) (hY₄ : Measurable Y₄) (h_indep : ProbabilityTheory.iIndepFun (fun (x : Fin (Nat.succ 0).succ.succ.succ) => hGm) ![Y₁, Y₂, Y₃, Y₄] MeasureTheory.volume) (hA : A.Nonempty) :
                                                            ρ[Y₁ + Y₂ | Y₁ + Y₃, Y₁ + Y₂ + Y₃ + Y₄ # A] (ρ[Y₁ # A] + ρ[Y₂ # A] + ρ[Y₃ # A] + ρ[Y₄ # A]) / 4 + (d[Y₁ # Y₃] + d[Y₂ # Y₄]) / 4 + d[Y₁ | Y₁ + Y₃ # Y₂ | Y₂ + Y₄] / 2
                                                            theorem new_gen_ineq {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] {A : Finset G} [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [Module (ZMod 2) G] {Y₁ : ΩG} {Y₂ : ΩG} {Y₃ : ΩG} {Y₄ : ΩG} (hY₁ : Measurable Y₁) (hY₂ : Measurable Y₂) (hY₃ : Measurable Y₃) (hY₄ : Measurable Y₄) (h_indep : ProbabilityTheory.iIndepFun (fun (x : Fin (Nat.succ 0).succ.succ.succ) => hGm) ![Y₁, Y₂, Y₃, Y₄] MeasureTheory.volume) (hA : A.Nonempty) :
                                                            ρ[Y₁ + Y₂ | Y₁ + Y₃, Y₁ + Y₂ + Y₃ + Y₄ # A] (ρ[Y₁ # A] + ρ[Y₂ # A] + ρ[Y₃ # A] + ρ[Y₄ # A]) / 4 + (d[Y₁ # Y₂] + d[Y₃ # Y₄] + d[Y₁ # Y₃] + d[Y₂ # Y₄]) / 8 + (d[Y₁ + Y₂ # Y₃ + Y₄] + I[Y₁ + Y₂ : Y₁ + Y₃|Y₁ + Y₂ + Y₃ + Y₄] + d[Y₁ | Y₁ + Y₃ # Y₂ | Y₂ + Y₄]) / 4
                                                            theorem condRho_sum_le {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] {A : Finset G} [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [Module (ZMod 2) G] {Y₁ : ΩG} {Y₂ : ΩG} {Y₃ : ΩG} {Y₄ : ΩG} (hY₁ : Measurable Y₁) (hY₂ : Measurable Y₂) (hY₃ : Measurable Y₃) (hY₄ : Measurable Y₄) (h_indep : ProbabilityTheory.iIndepFun (fun (x : Fin (Nat.succ 0).succ.succ.succ) => hGm) ![Y₁, Y₂, Y₃, Y₄] MeasureTheory.volume) (hA : A.Nonempty) :
                                                            ρ[Y₁ + Y₂ | Y₁ + Y₃, Y₁ + Y₂ + Y₃ + Y₄ # A] + ρ[Y₁ + Y₃ | Y₁ + Y₂, Y₁ + Y₂ + Y₃ + Y₄ # A] - (ρ[Y₁ # A] + ρ[Y₂ # A] + ρ[Y₃ # A] + ρ[Y₄ # A]) / 2 (d[Y₁ # Y₂] + d[Y₃ # Y₄] + d[Y₁ # Y₃] + d[Y₂ # Y₄]) / 2

                                                            For independent random variables $Y_1,Y_2,Y_3,Y_4$ over $G$, define $S:=Y_1+Y_2+Y_3+Y_4$, $T_1:=Y_1+Y_2$, $T_2:=Y_1+Y_3$. Then $$\rho(T_1|T_2,S)+\rho(T_2|T_1,S) - \frac{1}{2}\sum_{i} \rho(Y_i) \le \frac{1}{2}(d[Y_1;Y_2]+d[Y_3;Y_4]+d[Y_1;Y_3]+d[Y_2;Y_4]).$$

                                                            theorem condRho_sum_le' {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] {A : Finset G} [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [Module (ZMod 2) G] {Y₁ : ΩG} {Y₂ : ΩG} {Y₃ : ΩG} {Y₄ : ΩG} (hY₁ : Measurable Y₁) (hY₂ : Measurable Y₂) (hY₃ : Measurable Y₃) (hY₄ : Measurable Y₄) (h_indep : ProbabilityTheory.iIndepFun (fun (x : Fin (Nat.succ 0).succ.succ.succ) => hGm) ![Y₁, Y₂, Y₃, Y₄] MeasureTheory.volume) (hA : A.Nonempty) :
                                                            let S := Y₁ + Y₂ + Y₃ + Y₄; let T₁ := Y₁ + Y₂; let T₂ := Y₁ + Y₃; let T₃ := Y₂ + Y₃; ρ[T₁ | T₂, S # A] + ρ[T₂ | T₁, S # A] + ρ[T₁ | T₃, S # A] + ρ[T₃ | T₁, S # A] + ρ[T₂ | T₃, S # A] + ρ[T₃ | T₂, S # A] - 3 * (ρ[Y₁ # A] + ρ[Y₂ # A] + ρ[Y₃ # A] + ρ[Y₄ # A]) / 2 d[Y₁ # Y₂] + d[Y₁ # Y₃] + d[Y₁ # Y₄] + d[Y₂ # Y₃] + d[Y₂ # Y₄] + d[Y₃ # Y₄]

                                                            For independent random variables $Y_1,Y_2,Y_3,Y_4$ over $G$, define $T_1:=Y_1+Y_2, T_2:=Y_1+Y_3, T_3:=Y_2+Y_3$ and $S:=Y_1+Y_2+Y_3+Y_4$. Then $$\sum_{1 \leq i < j \leq 3} (\rho(T_i|T_j,S) + \rho(T_j|T_i,S) - \frac{1}{2}\sum_{i} \rho(Y_i))\le \sum_{1\leq i < j \leq 4}d[Y_i;Y_j]$$

                                                            theorem dist_of_min_eq_zero' {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] {A : Finset G} {η : } (hη : 0 < η) {X₁ : ΩG} {X₂ : ΩG} {X₁' : ΩG} {X₂' : ΩG} (h_min : phiMinimizes X₁ X₂ η A MeasureTheory.volume) (h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume) (h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume) (h_indep : ProbabilityTheory.iIndepFun (fun (x : Fin (Nat.succ 0).succ.succ.succ) => hGm) ![X₁, X₂, X₁', X₂'] MeasureTheory.volume) (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [Module (ZMod 2) G] (hA : A.Nonempty) (hη' : η < 1 / 8) :
                                                            d[X₁ # X₂] = 0

                                                            If $X_1, X_2$ is a $\phi$-minimizer, then $d[X_1;X_2] = 0$.

                                                            theorem dist_of_min_eq_zero {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] {A : Finset G} {η : } (hη : 0 < η) {X₁ : ΩG} {X₂ : ΩG} (h_min : phiMinimizes X₁ X₂ η A MeasureTheory.volume) (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [Module (ZMod 2) G] (hA : A.Nonempty) (hη' : η < 1 / 8) :
                                                            d[X₁ # X₂] = 0
                                                            theorem phiMinimizer_exists_rdist_eq_zero {G : Type uG} [AddCommGroup G] [Fintype G] [hGm : MeasurableSpace G] [DiscreteMeasurableSpace G] {A : Finset G} [Module (ZMod 2) G] (hA : A.Nonempty) :
                                                            ∃ (Ω : Type uG) (x : MeasureTheory.MeasureSpace Ω) (X₁ : ΩG) (X₂ : ΩG), Measurable X₁ Measurable X₂ MeasureTheory.IsProbabilityMeasure MeasureTheory.volume phiMinimizes X₁ X₂ (1 / 8) A MeasureTheory.volume d[X₁ # X₂] = 0

                                                            For η ≤ 1/8, there exist phi-minimizers X₁, X₂ at zero Rusza distance. For η < 1/8, all minimizers are fine, by dist_of_min_eq_zero. For η = 1/8, we use a limit of minimizers for η < 1/8, which exists by compactness.

                                                            theorem rho_PFR_conjecture {G : Type uG} [AddCommGroup G] [Fintype G] [Module (ZMod 2) G] {Ω : Type uG} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [MeasurableSpace G] [DiscreteMeasurableSpace G] (Y₁ : ΩG) (Y₂ : ΩG) (hY₁ : Measurable Y₁) (hY₂ : Measurable Y₂) (A : Finset G) (hA : A.Nonempty) :
                                                            ∃ (H : Submodule (ZMod 2) G) (Ω' : Type uG) (mΩ' : MeasureTheory.MeasureSpace Ω') (U : Ω'G), MeasureTheory.IsProbabilityMeasure MeasureTheory.volume Measurable U ProbabilityTheory.IsUniform (↑H) U MeasureTheory.volume 2 * ρ[U # A] ρ[Y₁ # A] + ρ[Y₂ # A] + 8 * d[Y₁ # Y₂]

                                                            For any random variables $Y_1,Y_2$, there exist a subgroup $H$ such that $$ 2\rho(U_H) \leq \rho(Y_1) + \rho(Y_2) + 8 d[Y_1;Y_2].$$

                                                            theorem better_PFR_conjecture_aux0 {G : Type uG} [AddCommGroup G] [Fintype G] [Module (ZMod 2) G] {A : Set G} (h₀A : A.Nonempty) {K : } (hA : (Nat.card (A + A)) K * (Nat.card A)) :
                                                            ∃ (H : Submodule (ZMod 2) G) (t : G), K ^ (-4) * ((Nat.card A) * (Nat.card H)) ^ (1 / 2) (Nat.card (A (H + {t}))) (Nat.card A) K ^ 8 * (Nat.card H) (Nat.card H) K ^ 8 * (Nat.card A)

                                                            If $|A+A| \leq K|A|$, then there exists a subgroup $H$ and $t\in G$ such that $|A \cap (H+t)| \geq K^{-4} \sqrt{|A||V|}$, and $|H|/|A|\in[K^{-8},K^8]$.

                                                            theorem better_PFR_conjecture_aux {G : Type uG} [AddCommGroup G] [Fintype G] [Module (ZMod 2) G] {A : Set G} (h₀A : A.Nonempty) {K : } (hA : (Nat.card (A + A)) K * (Nat.card A)) :
                                                            ∃ (H : Submodule (ZMod 2) G) (c : Set G), (Nat.card c) K ^ 5 * (Nat.card A) ^ (1 / 2) * (Nat.card H) ^ (-1 / 2) (Nat.card H) K ^ 8 * (Nat.card A) (Nat.card A) K ^ 8 * (Nat.card H) A c + H

                                                            Auxiliary statement towards the polynomial Freiman-Ruzsa (PFR) conjecture: if $A$ is a subset of an elementary abelian 2-group of doubling constant at most $K$, then there exists a subgroup $H$ such that $A$ can be covered by at most $K^5 |A|^{1/2} / |H|^{1/2}$ cosets of $H$, and $H$ has the same cardinality as $A$ up to a multiplicative factor $K^8$.

                                                            theorem better_PFR_conjecture {G : Type uG} [AddCommGroup G] [Fintype G] [Module (ZMod 2) G] {A : Set G} (h₀A : A.Nonempty) {K : } (hA : (Nat.card (A + A)) K * (Nat.card A)) :
                                                            ∃ (H : Submodule (ZMod 2) G) (c : Set G), (Nat.card c) < 2 * K ^ 9 Nat.card H Nat.card A A c + H

                                                            If $A \subset {\bf F}_2^n$ is finite non-empty with $|A+A| \leq K|A|$, then there exists a subgroup $H$ of ${\bf F}_2^n$ with $|H| \leq |A|$ such that $A$ can be covered by at most $2K^9$ translates of $H$.

                                                            theorem better_PFR_conjecture' {G : Type u_1} [AddCommGroup G] [Module (ZMod 2) G] {A : Set G} {K : } (h₀A : A.Nonempty) (Afin : A.Finite) (hA : (Nat.card (A + A)) K * (Nat.card A)) :
                                                            ∃ (H : Submodule (ZMod 2) G) (c : Set G), c.Finite (↑H).Finite (Nat.card c) < 2 * K ^ 9 Nat.card H Nat.card A A c + H

                                                            Corollary of better_PFR_conjecture in which the ambient group is not required to be finite (but) then $H$ and $c$ are finite.