Documentation

PFR.Main

Polynomial Freiman-Ruzsa conjecture #

Here we prove the polynomial Freiman-Ruzsa conjecture.

theorem ProbabilityTheory.IsUniform.measureReal_preimage_sub_zero {G : Type u_1} {Ω : Type u_2} [AddCommGroup G] [Fintype G] [MeasurableSpace G] [MeasurableSingletonClass G] {A B : Finset G} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {U V : ΩG} (Uunif : ProbabilityTheory.IsUniform (↑A) U MeasureTheory.volume) (Umeas : Measurable U) (Vunif : ProbabilityTheory.IsUniform (↑B) V MeasureTheory.volume) (Vmeas : Measurable V) (h_indep : ProbabilityTheory.IndepFun U V MeasureTheory.volume) :
MeasureTheory.volume.real ((U - V) ⁻¹' {0}) = (Nat.card (A B)) / ((Nat.card { x : G // x A }) * (Nat.card { x : G // x B }))

Given two independent random variables U and V uniformly distributed respectively on A and B, then U = V with probability #(A ∩ B) / #A ⬝ #B.

theorem ProbabilityTheory.IsUniform.measureReal_preimage_sub {G : Type u_1} {Ω : Type u_2} [AddCommGroup G] [Fintype G] [MeasurableSpace G] [MeasurableSingletonClass G] {A B : Finset G} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {U V : ΩG} (Uunif : ProbabilityTheory.IsUniform (↑A) U MeasureTheory.volume) (Umeas : Measurable U) (Vunif : ProbabilityTheory.IsUniform (↑B) V MeasureTheory.volume) (Vmeas : Measurable V) (h_indep : ProbabilityTheory.IndepFun U V MeasureTheory.volume) (x : G) :
MeasureTheory.volume.real ((U - V) ⁻¹' {x}) = (Nat.card (A (B + {x}))) / ((Nat.card { x : G // x A }) * (Nat.card { x : G // x B }))

Given two independent random variables U and V uniformly distributed respectively on A and B, then U = V + x with probability # (A ∩ (B + x)) / #A ⬝ #B.

theorem PFR_conjecture_pos_aux {G : Type u_1} [AddCommGroup G] {A : Set G} [Finite A] {K : } (h₀A : A.Nonempty) (hA : (Nat.card (A - A)) K * (Nat.card A)) :
0 < (Nat.card A) 0 < (Nat.card (A - A)) 0 < K

Record positivity results that are useful in the proof of PFR.

theorem PFR_conjecture_pos_aux' {G : Type u_1} [AddCommGroup G] {A : Set G} [Finite A] {K : } (h₀A : A.Nonempty) (hA : (Nat.card (A + A)) K * (Nat.card A)) :
0 < (Nat.card A) 0 < (Nat.card (A + A)) 0 < K
theorem rdist_le_of_isUniform_of_card_add_le {G : Type u_1} [AddCommGroup G] {A : Set G} {K : } [Countable G] [A_fin : Finite A] [MeasurableSpace G] [MeasurableSingletonClass G] (h₀A : A.Nonempty) (hA : (Nat.card (A - A)) K * (Nat.card A)) {Ω : Type u_2} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {U₀ : ΩG} (U₀unif : ProbabilityTheory.IsUniform A U₀ MeasureTheory.volume) (U₀meas : Measurable U₀) :
d[U₀ # U₀] Real.log K

A uniform distribution on a set with doubling constant K has self Rusza distance at most log K.

theorem sumset_eq_sub {G : Type u_2} [AddCommGroup G] [Module (ZMod 2) G] (A : Set G) :
A + A = A - A
theorem PFR_conjecture_aux {G : Type u_1} [AddCommGroup G] {A : Set G} {K : } [Countable G] [Module (ZMod 2) G] [Fintype G] (h₀A : A.Nonempty) (hA : (Nat.card (A + A)) K * (Nat.card A)) :
∃ (H : Submodule (ZMod 2) G) (c : Set G), (Nat.card c) K ^ (13 / 2) * (Nat.card A) ^ (1 / 2) * (Nat.card H) ^ (-1 / 2) (Nat.card H) K ^ 11 * (Nat.card A) (Nat.card A) K ^ 11 * (Nat.card H) A c + H

Auxiliary statement towards the polynomial Freiman-Ruzsa (PFR) conjecture: if A is a subset of an elementary abelian 2-group of doubling constant at most $K$, then there exists a subgroup H such that A can be covered by at most K^(13/2) |A|^(1/2) / |H|^(1/2) cosets of H, and H has the same cardinality as A up to a multiplicative factor K^11.

theorem PFR_conjecture {G : Type u_1} [AddCommGroup G] {A : Set G} {K : } [Countable G] [Module (ZMod 2) G] [Fintype G] (h₀A : A.Nonempty) (hA : (Nat.card (A + A)) K * (Nat.card A)) :
∃ (H : Submodule (ZMod 2) G) (c : Set G), (Nat.card c) < 2 * K ^ 12 Nat.card H Nat.card A A c + H

The polynomial Freiman-Ruzsa (PFR) conjecture: if A is a subset of an elementary abelian 2-group of doubling constant at most K, then A can be covered by at most 2 * K ^ 12 cosets of a subgroup of cardinality at most |A|.

theorem PFR_conjecture' {G : Type u_2} [AddCommGroup G] [Module (ZMod 2) G] {A : Set G} {K : } (h₀A : A.Nonempty) (Afin : A.Finite) (hA : (Nat.card (A + A)) K * (Nat.card A)) :
∃ (H : Submodule (ZMod 2) G) (c : Set G), c.Finite (↑H).Finite (Nat.card c) < 2 * K ^ 12 Nat.card H Nat.card A A c + H

Corollary of PFR_conjecture in which the ambient group is not required to be finite (but) then H and c are finite.