Documentation

PFR.EntropyPFR

Entropic version of polynomial Freiman-Ruzsa conjecture #

Here we prove the entropic version of the polynomial Freiman-Ruzsa conjecture.

Main results #

theorem tau_strictly_decreases {Ω₀₁ : Type u_1} {Ω₀₂ : Type u_2} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] {Ω : Type u_3} [ : MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {G : Type uG} [AddCommGroup G] [Module (ZMod 2) G] [Fintype G] [MeasurableSpace G] [MeasurableSingletonClass G] (p : refPackage Ω₀₁ Ω₀₂ G) {X₁ X₂ : ΩG} (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (h_min : tau_minimizes p X₁ X₂) (hpη : p.η = 1 / 9) :
d[X₁ # X₂] = 0

If d[X1;X2]>0 then there are G-valued random variables X1,X2 such that τ[X1;X2]<τ[X1;X2]. Phrased in the contrapositive form for convenience of proof.

entropic_PFR_conjecture: For two G-valued random variables X10,X20, there is some subgroup HG such that d[X10;UH]+d[X20;UH]11d[X10;X20].