Endgame #
The endgame on tau-minimizers.
Assumptions:
- $X_1, X_2$ are tau-minimizers
- $X_1, X_2, \tilde X_1, \tilde X_2$ be independent random variables, with $X_1,\tilde X_1$ copies of $X_1$ and $X_2,\tilde X_2$ copies of $X_2$.
- $d[X_1;X_2] = k$
- $U := X_1 + X_2$
- $V := \tilde X_1 + X_2$
- $W := X_1 + \tilde X_1$
- $S := X_1 + X_2 + \tilde X_1 + \tilde X_2$.
- $I_1 := I[U : V | S]$
- $I_2 := I[U : W | S]$
- $I_3 := I[V : W | S]$ (not explicitly defined in Lean)
Main results: #
sum_condMutual_le
: An upper bound on the total conditional mutual information $I_1+I_2+I_3$.sum_dist_diff_le
: A sum of the "costs" of $U$, $V$, $W$.construct_good
: A construction of two random variables with small Ruzsa distance between them given some random variables with control on total cost, as well as total mutual information.
The quantity I_3 = I[V:W|S]
is equal to I_2
.
I[U : V | S] + I[V : W | S] + I[W : U | S]
is less than or equal to
6 * η * k - (1 - 5 * η) / (1 - η) * (2 * η * k - I₁)
.
$$ \sum_{i=1}^2 \sum_{A\in\{U,V,W\}} \big(d[X^0_i;A|S] - d[X^0_i;X_i]\big)$$ is less than or equal to $$ \leq (6 - 3\eta) k + 3(2 \eta k - I_1).$$
If $T_1, T_2, T_3$ are $G$-valued random variables with $T_1+T_2+T_3=0$ holds identically and $$ \delta := \sum_{1 \leq i < j \leq 3} I[T_i;T_j]$$ Then there exist random variables $T'_1, T'_2$ such that $$ d[T'_1;T'_2] + \eta (d[X_1^0;T'_1] - d[X_1^0;X_1]) + \eta(d[X_2^0;T'_2] - d[X_2^0;X_2]) $$ is at most $$ \delta + \eta ( d[X^0_1;T_1]-d[X^0_1;X_1]) + \eta (d[X^0_2;T_2]-d[X^0_2;X_2]) $$ $$ + \tfrac12 \eta I[T_1: T_3] + \tfrac12 \eta I[T_2: T_3].$$
If $T_1, T_2, T_3$ are $G$-valued random variables with $T_1+T_2+T_3=0$ holds identically and #
$$ \delta := \sum_{1 \leq i < j \leq 3} I[T_i;T_j]$$
Then there exist random variables $T'_1, T'_2$ such that
$$ d[T'_1;T'_2] + \eta (d[X_1^0;T'_1] - d[X_1^0;X _1]) + \eta(d[X_2^0;T'_2] - d[X_2^0;X_2])$$
is at most
$$\delta + \frac{\eta}{3} \biggl( \delta + \sum_{i=1}^2 \sum_{j = 1}^3 (d[X^0_i;T_j] - d[X^0_i; X_i]) \biggr).$$
If d[X₁ ; X₂] > 0
then there are G
-valued random variables X₁', X₂'
such that
Phrased in the contrapositive form for convenience of proof.