Endgame #
The endgame on tau-minimizers.
Assumptions:
are tau-minimizers be independent random variables, with copies of and copies of . . (not explicitly defined in Lean)
Main results: #
sum_condMutual_le
: An upper bound on the total conditional mutual information .sum_dist_diff_le
: A sum of the "costs" of , , .construct_good
: A construction of two random variables with small Ruzsa distance between them given some random variables with control on total cost, as well as total mutual information.
theorem
I₃_eq
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[hG : MeasurableSpace G]
[MeasurableSingletonClass G]
{Ω : Type u_4}
[mΩ : MeasureTheory.MeasureSpace Ω]
(X₁ X₂ X₁' X₂' : Ω → G)
(hX₁ : Measurable X₁)
(hX₂ : Measurable X₂)
(hX₁' : Measurable X₁')
(hX₂' : Measurable X₂')
(h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume)
(h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₁', X₂'] MeasureTheory.volume)
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
:
The quantity I_3 = I[V:W|S]
is equal to I_2
.
theorem
sum_condMutual_le
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[hG : MeasurableSpace G]
[MeasurableSingletonClass G]
{Ω₀₁ : Type u_2}
{Ω₀₂ : Type u_3}
[MeasureTheory.MeasureSpace Ω₀₁]
[MeasureTheory.MeasureSpace Ω₀₂]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
(p : refPackage Ω₀₁ Ω₀₂ G)
{Ω : Type u_4}
[mΩ : MeasureTheory.MeasureSpace Ω]
(X₁ X₂ X₁' X₂' : Ω → G)
(hX₁ : Measurable X₁)
(hX₂ : Measurable X₂)
(hX₁' : Measurable X₁')
(hX₂' : Measurable X₂')
(h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume)
(h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume)
(h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₁', X₂'] MeasureTheory.volume)
(h_min : tau_minimizes p X₁ X₂)
[Module (ZMod 2) G]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
:
I[U : V | S] + I[V : W | S] + I[W : U | S]
is less than or equal to
6 * η * k - (1 - 5 * η) / (1 - η) * (2 * η * k - I₁)
.
theorem
hU
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[hG : MeasurableSpace G]
[MeasurableSingletonClass G]
{Ω : Type u_4}
[mΩ : MeasureTheory.MeasureSpace Ω]
(X₁ X₂ X₁' X₂' : Ω → G)
(h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume)
(h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume)
(h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₁', X₂'] MeasureTheory.volume)
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
:
theorem
independenceCondition1
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[hG : MeasurableSpace G]
[MeasurableSingletonClass G]
{Ω : Type u_4}
[mΩ : MeasureTheory.MeasureSpace Ω]
{X₁ X₂ X₁' X₂' : Ω → G}
(hX₁ : Measurable X₁)
(hX₂ : Measurable X₂)
(hX₁' : Measurable X₁')
(hX₂' : Measurable X₂')
(h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₁', X₂'] MeasureTheory.volume)
:
ProbabilityTheory.iIndepFun ![X₁, X₂, X₁' + X₂'] MeasureTheory.volume
theorem
hV
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[hG : MeasurableSpace G]
[MeasurableSingletonClass G]
{Ω : Type u_4}
[mΩ : MeasureTheory.MeasureSpace Ω]
(X₁ X₂ X₁' X₂' : Ω → G)
(h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume)
(h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume)
(h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₁', X₂'] MeasureTheory.volume)
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
:
theorem
independenceCondition2
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[hG : MeasurableSpace G]
[MeasurableSingletonClass G]
{Ω : Type u_4}
[mΩ : MeasureTheory.MeasureSpace Ω]
{X₁ X₂ X₁' X₂' : Ω → G}
(hX₁ : Measurable X₁)
(hX₂ : Measurable X₂)
(hX₁' : Measurable X₁')
(hX₂' : Measurable X₂')
(h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₁', X₂'] MeasureTheory.volume)
:
ProbabilityTheory.iIndepFun ![X₂, X₁, X₁' + X₂'] MeasureTheory.volume
theorem
independenceCondition3
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[hG : MeasurableSpace G]
[MeasurableSingletonClass G]
{Ω : Type u_4}
[mΩ : MeasureTheory.MeasureSpace Ω]
{X₁ X₂ X₁' X₂' : Ω → G}
(hX₁ : Measurable X₁)
(hX₂ : Measurable X₂)
(hX₁' : Measurable X₁')
(hX₂' : Measurable X₂')
(h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₁', X₂'] MeasureTheory.volume)
:
ProbabilityTheory.iIndepFun ![X₁', X₂, X₁ + X₂'] MeasureTheory.volume
theorem
independenceCondition4
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[hG : MeasurableSpace G]
[MeasurableSingletonClass G]
{Ω : Type u_4}
[mΩ : MeasureTheory.MeasureSpace Ω]
{X₁ X₂ X₁' X₂' : Ω → G}
(hX₁ : Measurable X₁)
(hX₂ : Measurable X₂)
(hX₁' : Measurable X₁')
(hX₂' : Measurable X₂')
(h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₁', X₂'] MeasureTheory.volume)
:
ProbabilityTheory.iIndepFun ![X₂, X₁', X₁ + X₂'] MeasureTheory.volume
theorem
independenceCondition5
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[hG : MeasurableSpace G]
[MeasurableSingletonClass G]
{Ω : Type u_4}
[mΩ : MeasureTheory.MeasureSpace Ω]
{X₁ X₂ X₁' X₂' : Ω → G}
(hX₁ : Measurable X₁)
(hX₂ : Measurable X₂)
(hX₁' : Measurable X₁')
(hX₂' : Measurable X₂')
(h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₁', X₂'] MeasureTheory.volume)
:
ProbabilityTheory.iIndepFun ![X₁, X₁', X₂ + X₂'] MeasureTheory.volume
theorem
independenceCondition6
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[hG : MeasurableSpace G]
[MeasurableSingletonClass G]
{Ω : Type u_4}
[mΩ : MeasureTheory.MeasureSpace Ω]
{X₁ X₂ X₁' X₂' : Ω → G}
(hX₁ : Measurable X₁)
(hX₂ : Measurable X₂)
(hX₁' : Measurable X₁')
(hX₂' : Measurable X₂')
(h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₁', X₂'] MeasureTheory.volume)
:
ProbabilityTheory.iIndepFun ![X₂, X₂', X₁' + X₁] MeasureTheory.volume
theorem
sum_dist_diff_le
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[hG : MeasurableSpace G]
[MeasurableSingletonClass G]
{Ω₀₁ : Type u_2}
{Ω₀₂ : Type u_3}
[MeasureTheory.MeasureSpace Ω₀₁]
[MeasureTheory.MeasureSpace Ω₀₂]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
(p : refPackage Ω₀₁ Ω₀₂ G)
{Ω : Type u_4}
[mΩ : MeasureTheory.MeasureSpace Ω]
(X₁ X₂ X₁' X₂' : Ω → G)
(hX₁ : Measurable X₁)
(hX₂ : Measurable X₂)
(hX₁' : Measurable X₁')
(hX₂' : Measurable X₂')
(h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume)
(h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume)
(h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₁', X₂'] MeasureTheory.volume)
(h_min : tau_minimizes p X₁ X₂)
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
[Module (ZMod 2) G]
:
d[p.X₀₁ # X₁ + X₂ | X₁ + X₂ + X₁' + X₂'] - d[p.X₀₁ # X₁] + (d[p.X₀₂ # X₁ + X₂ | X₁ + X₂ + X₁' + X₂'] - d[p.X₀₂ # X₂]) + (d[p.X₀₁ # X₁' + X₂ | X₁ + X₂ + X₁' + X₂'] - d[p.X₀₁ # X₁] + (d[p.X₀₂ # X₁' + X₂ | X₁ + X₂ + X₁' + X₂'] - d[p.X₀₂ # X₂])) + (d[p.X₀₁ # X₁' + X₁ | X₁ + X₂ + X₁' + X₂'] - d[p.X₀₁ # X₁] + (d[p.X₀₂ # X₁' + X₁ | X₁ + X₂ + X₁' + X₂'] - d[p.X₀₂ # X₂])) ≤ (6 - 3 * p.η) * d[X₁ # X₂] + 3 * (2 * p.η * d[X₁ # X₂] - I[X₁ + X₂ : X₁' + X₂|X₁ + X₂ + X₁' + X₂'])
theorem
cond_c_eq_integral
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[hG : MeasurableSpace G]
[MeasurableSingletonClass G]
{Ω₀₁ : Type u_2}
{Ω₀₂ : Type u_3}
[MeasureTheory.MeasureSpace Ω₀₁]
[MeasureTheory.MeasureSpace Ω₀₂]
(p : refPackage Ω₀₁ Ω₀₂ G)
{Ω : Type u_4}
[mΩ : MeasureTheory.MeasureSpace Ω]
(X₁ X₂ : Ω → G)
{Ω' : Type u_5}
[MeasureTheory.MeasureSpace Ω']
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
{Y Z : Ω' → G}
(hY : Measurable Y)
(hZ : Measurable Z)
:
d[p.X₀₁ # Y | Z] - d[p.X₀₁ # X₁] + (d[p.X₀₂ # Y | Z] - d[p.X₀₂ # X₂]) = ∫ (x : G), (fun (z : G) =>
d[p.X₀₁ ; MeasureTheory.volume # Y ; MeasureTheory.volume[|Z ⁻¹' {z}]] - d[p.X₀₁ # X₁] + (d[p.X₀₂ ; MeasureTheory.volume # Y ; MeasureTheory.volume[|Z ⁻¹' {z}]] - d[p.X₀₂ # X₂]))
x ∂MeasureTheory.Measure.map Z MeasureTheory.volume
theorem
construct_good_prelim
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[hG : MeasurableSpace G]
[MeasurableSingletonClass G]
{Ω₀₁ : Type u_2}
{Ω₀₂ : Type u_3}
[MeasureTheory.MeasureSpace Ω₀₁]
[MeasureTheory.MeasureSpace Ω₀₂]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
(p : refPackage Ω₀₁ Ω₀₂ G)
{Ω : Type u_4}
[mΩ : MeasureTheory.MeasureSpace Ω]
(X₁ X₂ : Ω → G)
(h_min : tau_minimizes p X₁ X₂)
{Ω' : Type u_5}
[MeasureTheory.MeasureSpace Ω']
{T₁ T₂ T₃ : Ω' → G}
(hT : T₁ + T₂ + T₃ = 0)
(hT₁ : Measurable T₁)
(hT₂ : Measurable T₂)
(hT₃ : Measurable T₃)
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
[Module (ZMod 2) G]
:
If
theorem
construct_good
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[hG : MeasurableSpace G]
[MeasurableSingletonClass G]
{Ω₀₁ : Type u_2}
{Ω₀₂ : Type u_3}
[MeasureTheory.MeasureSpace Ω₀₁]
[MeasureTheory.MeasureSpace Ω₀₂]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
(p : refPackage Ω₀₁ Ω₀₂ G)
{Ω : Type u_4}
[mΩ : MeasureTheory.MeasureSpace Ω]
(X₁ X₂ : Ω → G)
(h_min : tau_minimizes p X₁ X₂)
{Ω' : Type u_5}
[MeasureTheory.MeasureSpace Ω']
{T₁ T₂ T₃ : Ω' → G}
(hT : T₁ + T₂ + T₃ = 0)
(hT₁ : Measurable T₁)
(hT₂ : Measurable T₂)
(hT₃ : Measurable T₃)
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
[Module (ZMod 2) G]
:
d[X₁ # X₂] ≤ I[T₁ : T₂] + I[T₂ : T₃] + I[T₃ : T₁] + p.η / 3 * (I[T₁ : T₂] + I[T₂ : T₃] + I[T₃ : T₁] + (d[p.X₀₁ # T₁] - d[p.X₀₁ # X₁] + (d[p.X₀₂ # T₁] - d[p.X₀₂ # X₂])) + (d[p.X₀₁ # T₂] - d[p.X₀₁ # X₁] + (d[p.X₀₂ # T₂] - d[p.X₀₂ # X₂])) + (d[p.X₀₁ # T₃] - d[p.X₀₁ # X₁] + (d[p.X₀₂ # T₃] - d[p.X₀₂ # X₂])))
If are -valued random variables with holds identically and #
Then there exist random variables
is at most
theorem
construct_good'
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[hG : MeasurableSpace G]
[MeasurableSingletonClass G]
{Ω₀₁ : Type u_2}
{Ω₀₂ : Type u_3}
[MeasureTheory.MeasureSpace Ω₀₁]
[MeasureTheory.MeasureSpace Ω₀₂]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
(p : refPackage Ω₀₁ Ω₀₂ G)
{Ω : Type u_4}
[mΩ : MeasureTheory.MeasureSpace Ω]
(X₁ X₂ : Ω → G)
(h_min : tau_minimizes p X₁ X₂)
{Ω' : Type u_5}
[MeasureTheory.MeasureSpace Ω']
{T₁ T₂ T₃ : Ω' → G}
(hT : T₁ + T₂ + T₃ = 0)
(hT₁ : Measurable T₁)
(hT₂ : Measurable T₂)
(hT₃ : Measurable T₃)
[Module (ZMod 2) G]
(μ : MeasureTheory.Measure Ω')
[MeasureTheory.IsProbabilityMeasure μ]
:
d[X₁ # X₂] ≤ I[T₁ : T₂ ; μ] + I[T₂ : T₃ ; μ] + I[T₃ : T₁ ; μ] + p.η / 3 * (I[T₁ : T₂ ; μ] + I[T₂ : T₃ ; μ] + I[T₃ : T₁ ; μ] + (d[p.X₀₁ ; MeasureTheory.volume # T₁ ; μ] - d[p.X₀₁ # X₁] + (d[p.X₀₂ ; MeasureTheory.volume # T₁ ; μ] - d[p.X₀₂ # X₂])) + (d[p.X₀₁ ; MeasureTheory.volume # T₂ ; μ] - d[p.X₀₁ # X₁] + (d[p.X₀₂ ; MeasureTheory.volume # T₂ ; μ] - d[p.X₀₂ # X₂])) + (d[p.X₀₁ ; MeasureTheory.volume # T₃ ; μ] - d[p.X₀₁ # X₁] + (d[p.X₀₂ ; MeasureTheory.volume # T₃ ; μ] - d[p.X₀₂ # X₂])))
theorem
delta'_eq_integral
{G : Type u_1}
[Fintype G]
[hG : MeasurableSpace G]
[MeasurableSingletonClass G]
{Ω' : Type u_5}
[MeasureTheory.MeasureSpace Ω']
{T₁ T₂ T₃ : Ω' → G}
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
{R : Ω' → G}
:
theorem
cond_construct_good
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[hG : MeasurableSpace G]
[MeasurableSingletonClass G]
{Ω₀₁ : Type u_2}
{Ω₀₂ : Type u_3}
[MeasureTheory.MeasureSpace Ω₀₁]
[MeasureTheory.MeasureSpace Ω₀₂]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
(p : refPackage Ω₀₁ Ω₀₂ G)
{Ω : Type u_4}
[mΩ : MeasureTheory.MeasureSpace Ω]
(X₁ X₂ : Ω → G)
(hX₁ : Measurable X₁)
(hX₂ : Measurable X₂)
(h_min : tau_minimizes p X₁ X₂)
{Ω' : Type u_5}
[MeasureTheory.MeasureSpace Ω']
{T₁ T₂ T₃ : Ω' → G}
(hT : T₁ + T₂ + T₃ = 0)
(hT₁ : Measurable T₁)
(hT₂ : Measurable T₂)
(hT₃ : Measurable T₃)
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
[Module (ZMod 2) G]
{R : Ω' → G}
(hR : Measurable R)
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
:
d[X₁ # X₂] ≤ I[T₁ : T₂|R] + I[T₂ : T₃|R] + I[T₃ : T₁|R] + p.η / 3 * (I[T₁ : T₂|R] + I[T₂ : T₃|R] + I[T₃ : T₁|R] + (d[p.X₀₁ # T₁ | R] - d[p.X₀₁ # X₁] + (d[p.X₀₂ # T₁ | R] - d[p.X₀₂ # X₂])) + (d[p.X₀₁ # T₂ | R] - d[p.X₀₁ # X₁] + (d[p.X₀₂ # T₂ | R] - d[p.X₀₂ # X₂])) + (d[p.X₀₁ # T₃ | R] - d[p.X₀₁ # X₁] + (d[p.X₀₂ # T₃ | R] - d[p.X₀₂ # X₂])))
theorem
tau_strictly_decreases_aux
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[hG : MeasurableSpace G]
[MeasurableSingletonClass G]
{Ω₀₁ : Type u_2}
{Ω₀₂ : Type u_3}
[MeasureTheory.MeasureSpace Ω₀₁]
[MeasureTheory.MeasureSpace Ω₀₂]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
(p : refPackage Ω₀₁ Ω₀₂ G)
{Ω : Type u_4}
[mΩ : MeasureTheory.MeasureSpace Ω]
(X₁ X₂ X₁' X₂' : Ω → G)
(hX₁ : Measurable X₁)
(hX₂ : Measurable X₂)
(hX₁' : Measurable X₁')
(hX₂' : Measurable X₂')
(h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume)
(h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume)
(h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₁', X₂'] MeasureTheory.volume)
(h_min : tau_minimizes p X₁ X₂)
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
[Module (ZMod 2) G]
(hpη : p.η = 1 / 9)
:
If d[X₁ ; X₂] > 0
then there are G
-valued random variables X₁', X₂'
such that
Phrased in the contrapositive form for convenience of proof.