Documentation

PFR.Endgame

Endgame #

The endgame on tau-minimizers.

Assumptions:

Main results: #

theorem I₃_eq {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] {Ω : Type u_4} [ : MeasureTheory.MeasureSpace Ω] (X₁ X₂ X₁' X₂' : ΩG) (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') (h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume) (h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₁', X₂'] MeasureTheory.volume) [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] :
I[X₁' + X₂ : X₁' + X₁|X₁ + X₂ + X₁' + X₂'] = I[X₁ + X₂ : X₁' + X₁|X₁ + X₂ + X₁' + X₂']

The quantity I_3 = I[V:W|S] is equal to I_2.

theorem sum_condMutual_le {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [ : MeasureTheory.MeasureSpace Ω] (X₁ X₂ X₁' X₂' : ΩG) (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') (h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume) (h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume) (h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₁', X₂'] MeasureTheory.volume) (h_min : tau_minimizes p X₁ X₂) [Module (ZMod 2) G] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] :
I[X₁ + X₂ : X₁' + X₂|X₁ + X₂ + X₁' + X₂'] + I[X₁' + X₂ : X₁' + X₁|X₁ + X₂ + X₁' + X₂'] + I[X₁' + X₁ : X₁ + X₂|X₁ + X₂ + X₁' + X₂'] 6 * p.η * d[X₁ # X₂] - (1 - 5 * p.η) / (1 - p.η) * (2 * p.η * d[X₁ # X₂] - I[X₁ + X₂ : X₁' + X₂|X₁ + X₂ + X₁' + X₂'])

I[U : V | S] + I[V : W | S] + I[W : U | S] is less than or equal to 6 * η * k - (1 - 5 * η) / (1 - η) * (2 * η * k - I₁).

theorem independenceCondition1 {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] {Ω : Type u_4} [ : MeasureTheory.MeasureSpace Ω] {X₁ X₂ X₁' X₂' : ΩG} (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') (h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₁', X₂'] MeasureTheory.volume) :
theorem independenceCondition2 {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] {Ω : Type u_4} [ : MeasureTheory.MeasureSpace Ω] {X₁ X₂ X₁' X₂' : ΩG} (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') (h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₁', X₂'] MeasureTheory.volume) :
theorem independenceCondition3 {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] {Ω : Type u_4} [ : MeasureTheory.MeasureSpace Ω] {X₁ X₂ X₁' X₂' : ΩG} (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') (h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₁', X₂'] MeasureTheory.volume) :
theorem independenceCondition4 {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] {Ω : Type u_4} [ : MeasureTheory.MeasureSpace Ω] {X₁ X₂ X₁' X₂' : ΩG} (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') (h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₁', X₂'] MeasureTheory.volume) :
theorem independenceCondition5 {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] {Ω : Type u_4} [ : MeasureTheory.MeasureSpace Ω] {X₁ X₂ X₁' X₂' : ΩG} (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') (h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₁', X₂'] MeasureTheory.volume) :
theorem independenceCondition6 {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] {Ω : Type u_4} [ : MeasureTheory.MeasureSpace Ω] {X₁ X₂ X₁' X₂' : ΩG} (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') (h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₁', X₂'] MeasureTheory.volume) :
theorem sum_dist_diff_le {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [ : MeasureTheory.MeasureSpace Ω] (X₁ X₂ X₁' X₂' : ΩG) (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') (h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume) (h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume) (h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₁', X₂'] MeasureTheory.volume) (h_min : tau_minimizes p X₁ X₂) [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [Module (ZMod 2) G] :
d[p.X₀₁ # X₁ + X₂ | X₁ + X₂ + X₁' + X₂'] - d[p.X₀₁ # X₁] + (d[p.X₀₂ # X₁ + X₂ | X₁ + X₂ + X₁' + X₂'] - d[p.X₀₂ # X₂]) + (d[p.X₀₁ # X₁' + X₂ | X₁ + X₂ + X₁' + X₂'] - d[p.X₀₁ # X₁] + (d[p.X₀₂ # X₁' + X₂ | X₁ + X₂ + X₁' + X₂'] - d[p.X₀₂ # X₂])) + (d[p.X₀₁ # X₁' + X₁ | X₁ + X₂ + X₁' + X₂'] - d[p.X₀₁ # X₁] + (d[p.X₀₂ # X₁' + X₁ | X₁ + X₂ + X₁' + X₂'] - d[p.X₀₂ # X₂])) (6 - 3 * p.η) * d[X₁ # X₂] + 3 * (2 * p.η * d[X₁ # X₂] - I[X₁ + X₂ : X₁' + X₂|X₁ + X₂ + X₁' + X₂'])

i=12A{U,V,W}(d[Xi0;A|S]d[Xi0;Xi]) is less than or equal to (63η)k+3(2ηkI1).

theorem sum_uvw_eq_zero {G : Type u_1} [AddCommGroup G] {Ω : Type u_4} (X₁ X₂ X₁' : ΩG) [Module (ZMod 2) G] :
X₁ + X₂ + (X₁' + X₂) + (X₁' + X₁) = 0

U + V + W = 0.

theorem cond_c_eq_integral {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [ : MeasureTheory.MeasureSpace Ω] (X₁ X₂ : ΩG) {Ω' : Type u_5} [MeasureTheory.MeasureSpace Ω'] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {Y Z : Ω'G} (hY : Measurable Y) (hZ : Measurable Z) :
theorem construct_good_prelim {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [ : MeasureTheory.MeasureSpace Ω] (X₁ X₂ : ΩG) (h_min : tau_minimizes p X₁ X₂) {Ω' : Type u_5} [MeasureTheory.MeasureSpace Ω'] {T₁ T₂ T₃ : Ω'G} (hT : T₁ + T₂ + T₃ = 0) (hT₁ : Measurable T₁) (hT₂ : Measurable T₂) (hT₃ : Measurable T₃) [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [Module (ZMod 2) G] :
d[X₁ # X₂] I[T₁ : T₂] + I[T₂ : T₃] + I[T₃ : T₁] + p.η * (d[p.X₀₁ # T₁] - d[p.X₀₁ # X₁] + (d[p.X₀₂ # T₂] - d[p.X₀₂ # X₂])) + p.η * (I[T₁ : T₃] + I[T₂ : T₃]) / 2

If T1,T2,T3 are G-valued random variables with T1+T2+T3=0 holds identically and δ:=1i<j3I[Ti;Tj] Then there exist random variables T1,T2 such that d[T1;T2]+η(d[X10;T1]d[X10;X1])+η(d[X20;T2]d[X20;X2]) is at most δ+η(d[X10;T1]d[X10;X1])+η(d[X20;T2]d[X20;X2]) +12ηI[T1:T3]+12ηI[T2:T3].

theorem construct_good {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [ : MeasureTheory.MeasureSpace Ω] (X₁ X₂ : ΩG) (h_min : tau_minimizes p X₁ X₂) {Ω' : Type u_5} [MeasureTheory.MeasureSpace Ω'] {T₁ T₂ T₃ : Ω'G} (hT : T₁ + T₂ + T₃ = 0) (hT₁ : Measurable T₁) (hT₂ : Measurable T₂) (hT₃ : Measurable T₃) [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [Module (ZMod 2) G] :
d[X₁ # X₂] I[T₁ : T₂] + I[T₂ : T₃] + I[T₃ : T₁] + p.η / 3 * (I[T₁ : T₂] + I[T₂ : T₃] + I[T₃ : T₁] + (d[p.X₀₁ # T₁] - d[p.X₀₁ # X₁] + (d[p.X₀₂ # T₁] - d[p.X₀₂ # X₂])) + (d[p.X₀₁ # T₂] - d[p.X₀₁ # X₁] + (d[p.X₀₂ # T₂] - d[p.X₀₂ # X₂])) + (d[p.X₀₁ # T₃] - d[p.X₀₁ # X₁] + (d[p.X₀₂ # T₃] - d[p.X₀₂ # X₂])))

If T1,T2,T3 are G-valued random variables with T1+T2+T3=0 holds identically and #

δ:=1i<j3I[Ti;Tj]

Then there exist random variables T1,T2 such that

d[T1;T2]+η(d[X10;T1]d[X10;X1])+η(d[X20;T2]d[X20;X2])

is at most

δ+η3(δ+i=12j=13(d[Xi0;Tj]d[Xi0;Xi])).

theorem construct_good' {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [ : MeasureTheory.MeasureSpace Ω] (X₁ X₂ : ΩG) (h_min : tau_minimizes p X₁ X₂) {Ω' : Type u_5} [MeasureTheory.MeasureSpace Ω'] {T₁ T₂ T₃ : Ω'G} (hT : T₁ + T₂ + T₃ = 0) (hT₁ : Measurable T₁) (hT₂ : Measurable T₂) (hT₃ : Measurable T₃) [Module (ZMod 2) G] (μ : MeasureTheory.Measure Ω') [MeasureTheory.IsProbabilityMeasure μ] :
d[X₁ # X₂] I[T₁ : T₂ ; μ] + I[T₂ : T₃ ; μ] + I[T₃ : T₁ ; μ] + p.η / 3 * (I[T₁ : T₂ ; μ] + I[T₂ : T₃ ; μ] + I[T₃ : T₁ ; μ] + (d[p.X₀₁ ; MeasureTheory.volume # T₁ ; μ] - d[p.X₀₁ # X₁] + (d[p.X₀₂ ; MeasureTheory.volume # T₁ ; μ] - d[p.X₀₂ # X₂])) + (d[p.X₀₁ ; MeasureTheory.volume # T₂ ; μ] - d[p.X₀₁ # X₁] + (d[p.X₀₂ ; MeasureTheory.volume # T₂ ; μ] - d[p.X₀₂ # X₂])) + (d[p.X₀₁ ; MeasureTheory.volume # T₃ ; μ] - d[p.X₀₁ # X₁] + (d[p.X₀₂ ; MeasureTheory.volume # T₃ ; μ] - d[p.X₀₂ # X₂])))
theorem delta'_eq_integral {G : Type u_1} [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] {Ω' : Type u_5} [MeasureTheory.MeasureSpace Ω'] {T₁ T₂ T₃ : Ω'G} [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {R : Ω'G} :
I[T₁ : T₂|R] + I[T₂ : T₃|R] + I[T₃ : T₁|R] = (x : G), (fun (r : G) => I[T₁ : T₂ ; MeasureTheory.volume[|R ⁻¹' {r}]] + I[T₂ : T₃ ; MeasureTheory.volume[|R ⁻¹' {r}]] + I[T₃ : T₁ ; MeasureTheory.volume[|R ⁻¹' {r}]]) x MeasureTheory.Measure.map R MeasureTheory.volume
theorem cond_construct_good {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [ : MeasureTheory.MeasureSpace Ω] (X₁ X₂ : ΩG) (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (h_min : tau_minimizes p X₁ X₂) {Ω' : Type u_5} [MeasureTheory.MeasureSpace Ω'] {T₁ T₂ T₃ : Ω'G} (hT : T₁ + T₂ + T₃ = 0) (hT₁ : Measurable T₁) (hT₂ : Measurable T₂) (hT₃ : Measurable T₃) [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [Module (ZMod 2) G] {R : Ω'G} (hR : Measurable R) [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] :
d[X₁ # X₂] I[T₁ : T₂|R] + I[T₂ : T₃|R] + I[T₃ : T₁|R] + p.η / 3 * (I[T₁ : T₂|R] + I[T₂ : T₃|R] + I[T₃ : T₁|R] + (d[p.X₀₁ # T₁ | R] - d[p.X₀₁ # X₁] + (d[p.X₀₂ # T₁ | R] - d[p.X₀₂ # X₂])) + (d[p.X₀₁ # T₂ | R] - d[p.X₀₁ # X₁] + (d[p.X₀₂ # T₂ | R] - d[p.X₀₂ # X₂])) + (d[p.X₀₁ # T₃ | R] - d[p.X₀₁ # X₁] + (d[p.X₀₂ # T₃ | R] - d[p.X₀₂ # X₂])))
theorem tau_strictly_decreases_aux {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [ : MeasureTheory.MeasureSpace Ω] (X₁ X₂ X₁' X₂' : ΩG) (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') (h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume) (h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume) (h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₁', X₂'] MeasureTheory.volume) (h_min : tau_minimizes p X₁ X₂) [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [Module (ZMod 2) G] (hpη : p.η = 1 / 9) :
d[X₁ # X₂] = 0

If d[X₁ ; X₂] > 0 then there are G-valued random variables X₁', X₂' such that Phrased in the contrapositive form for convenience of proof.