Second estimate #
The second estimate on tau-minimizers.
Assumptions:
are tau-minimizers be independent random variables, with copies of and copies of .
Main results #
theorem
rdist_of_sums_ge'
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[hG : MeasurableSpace G]
[MeasurableSingletonClass G]
[Module (ZMod 2) G]
[MeasurableAdd₂ G]
{Ω₀₁ : Type u_2}
{Ω₀₂ : Type u_3}
[MeasureTheory.MeasureSpace Ω₀₁]
[MeasureTheory.MeasureSpace Ω₀₂]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
(p : refPackage Ω₀₁ Ω₀₂ G)
{Ω : Type u_4}
[MeasureTheory.MeasureSpace Ω]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
(X₁ X₂ X₁' X₂' : Ω → G)
(hX₁ : Measurable X₁)
(hX₂ : Measurable X₂)
(hX₁' : Measurable X₁')
(hX₂' : Measurable X₂')
(h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume)
(h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume)
(h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₁', X₂'] MeasureTheory.volume)
(h_min : tau_minimizes p X₁ X₂)
:
theorem
second_estimate_aux
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[hG : MeasurableSpace G]
[MeasurableSingletonClass G]
[Module (ZMod 2) G]
[MeasurableAdd₂ G]
{Ω₀₁ : Type u_2}
{Ω₀₂ : Type u_3}
[MeasureTheory.MeasureSpace Ω₀₁]
[MeasureTheory.MeasureSpace Ω₀₂]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
(p : refPackage Ω₀₁ Ω₀₂ G)
{Ω : Type u_4}
[MeasureTheory.MeasureSpace Ω]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
(X₁ X₂ X₁' X₂' : Ω → G)
(hX₁ : Measurable X₁)
(hX₂ : Measurable X₂)
(hX₁' : Measurable X₁')
(hX₂' : Measurable X₂')
(h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume)
(h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume)
(h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₁', X₂'] MeasureTheory.volume)
(h_min : tau_minimizes p X₁ X₂)
:
theorem
second_estimate
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[hG : MeasurableSpace G]
[MeasurableSingletonClass G]
[Module (ZMod 2) G]
[MeasurableAdd₂ G]
{Ω₀₁ : Type u_2}
{Ω₀₂ : Type u_3}
[MeasureTheory.MeasureSpace Ω₀₁]
[MeasureTheory.MeasureSpace Ω₀₂]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
(p : refPackage Ω₀₁ Ω₀₂ G)
{Ω : Type u_4}
[MeasureTheory.MeasureSpace Ω]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
(X₁ X₂ X₁' X₂' : Ω → G)
(hX₁ : Measurable X₁)
(hX₂ : Measurable X₂)
(hX₁' : Measurable X₁')
(hX₂' : Measurable X₂')
(h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume)
(h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume)
(h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₁', X₂'] MeasureTheory.volume)
(h_min : tau_minimizes p X₁ X₂)
: