Documentation

PFR.SecondEstimate

Second estimate #

The second estimate on tau-minimizers.

Assumptions:

Main results #

theorem rdist_of_sums_ge' {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [Module (ZMod 2) G] [MeasurableAdd₂ G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (X₁ : ΩG) (X₂ : ΩG) (X₁' : ΩG) (X₂' : ΩG) (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') (h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume) (h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume) (h_indep : ProbabilityTheory.iIndepFun (fun (_i : Fin (Nat.succ 0).succ.succ.succ) => hG) ![X₁, X₂, X₁', X₂'] MeasureTheory.volume) (h_min : tau_minimizes p X₁ X₂) :
d[X₁ + X₁' # X₂ + X₂'] d[X₁ # X₂] - p * (d[X₁ # X₁] + d[X₂ # X₂]) / 2

$$ d[X_1+\tilde X_1; X_2+\tilde X_2] \geq k - \frac{\eta}{2} ( d[X_1; X_1] + d[X_2;X_2] ).$$

theorem second_estimate_aux {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [Module (ZMod 2) G] [MeasurableAdd₂ G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (X₁ : ΩG) (X₂ : ΩG) (X₁' : ΩG) (X₂' : ΩG) (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') (h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume) (h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume) (h_indep : ProbabilityTheory.iIndepFun (fun (_i : Fin (Nat.succ 0).succ.succ.succ) => hG) ![X₁, X₂, X₁', X₂'] MeasureTheory.volume) (h_min : tau_minimizes p X₁ X₂) :
d[X₁ # X₁] + d[X₂ # X₂] 2 * (d[X₁ # X₂] + (2 * p * d[X₁ # X₂] - I[X₁ + X₂ : X₁' + X₂|X₁ + X₂ + X₁' + X₂']) / (1 - p))
theorem second_estimate {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [Module (ZMod 2) G] [MeasurableAdd₂ G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (X₁ : ΩG) (X₂ : ΩG) (X₁' : ΩG) (X₂' : ΩG) (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') (h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume) (h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume) (h_indep : ProbabilityTheory.iIndepFun (fun (_i : Fin (Nat.succ 0).succ.succ.succ) => hG) ![X₁, X₂, X₁', X₂'] MeasureTheory.volume) (h_min : tau_minimizes p X₁ X₂) :
I[X₁ + X₂ : X₁' + X₁|X₁ + X₂ + X₁' + X₂'] 2 * p * d[X₁ # X₂] + 2 * p * (2 * p * d[X₁ # X₂] - I[X₁ + X₂ : X₁' + X₂|X₁ + X₂ + X₁' + X₂']) / (1 - p)

$$ I_2 \leq 2 \eta k + \frac{2 \eta (2 \eta k - I_1)}{1 - \eta}.$$