Documentation

PFR.FirstEstimate

First estimate #

The first estimate on tau-minimizers.

Assumptions:

Main results #

theorem rdist_add_rdist_add_condMutual_eq {G : Type u_1} [addgroup : AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] {Ω : Type u_4} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (X₁ X₂ X₁' X₂' : ΩG) (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') (h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume) (h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume) (h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₂', X₁'] MeasureTheory.volume) [Module (ZMod 2) G] :
d[X₁ + X₂' # X₂ + X₁'] + d[X₁ | X₁ + X₂' # X₂ | X₂ + X₁'] + I[X₁ + X₂ : X₁' + X₂|X₁ + X₂ + X₁' + X₂'] = 2 * d[X₁ # X₂]

The sum of d[X1+X~2;X2+X~1]+d[X1|X1+X~2;X2|X2+X~1] and I[X1+X2:X~1+X2|X1+X2+X~1+X~2] is equal to 2k.

theorem rdist_of_sums_ge {G : Type u_1} [addgroup : AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (X₁ X₂ X₁' X₂' : ΩG) (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') (h_min : tau_minimizes p X₁ X₂) :
d[X₁ + X₂' # X₂ + X₁'] d[X₁ # X₂] - p.η * (d[p.X₀₁ # X₁ + X₂'] - d[p.X₀₁ # X₁]) - p.η * (d[p.X₀₂ # X₂ + X₁'] - d[p.X₀₂ # X₂])

The distance d[X1+X~2;X2+X~1] is at least kη(d[X10;X1+X~2]d[X10;X1])η(d[X20;X2+X~1]d[X20;X2]).

theorem condRuzsaDist_of_sums_ge {G : Type u_1} [addgroup : AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (X₁ X₂ X₁' X₂' : ΩG) (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') (h_min : tau_minimizes p X₁ X₂) :
d[X₁ | X₁ + X₂' # X₂ | X₂ + X₁'] d[X₁ # X₂] - p.η * (d[p.X₀₁ # X₁ | X₁ + X₂'] - d[p.X₀₁ # X₁]) - p.η * (d[p.X₀₂ # X₂ | X₂ + X₁'] - d[p.X₀₂ # X₂])

The distance d[X1|X1+X~2;X2|X2+X~1] is at least kη(d[X10;X1|X1+X~2]d[X10;X1])η(d[X20;X2|X2+X~1]d[X20;X2]).

theorem diff_rdist_le_1 {G : Type u_1} [addgroup : AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (X₁ X₂ X₁' X₂' : ΩG) (hX₁ : Measurable X₁) (hX₂' : Measurable X₂') (h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume) (h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₂', X₁'] MeasureTheory.volume) [Module (ZMod 2) G] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] :
d[p.X₀₁ # X₁ + X₂'] - d[p.X₀₁ # X₁] d[X₁ # X₂] / 2 + H[X₂] / 4 - H[X₁] / 4

d[X₀₁ # X₁ + X₂'] - d[X₀₁ # X₁] ≤ k/2 + H[X₂]/4 - H[X₁]/4.

theorem diff_rdist_le_2 {G : Type u_1} [addgroup : AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (X₁ X₂ X₁' X₂' : ΩG) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume) (h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₂', X₁'] MeasureTheory.volume) [Module (ZMod 2) G] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] :
d[p.X₀₂ # X₂ + X₁'] - d[p.X₀₂ # X₂] d[X₁ # X₂] / 2 + H[X₁] / 4 - H[X₂] / 4

d[X20;X2+X~1]d[X20;X2]12k+14H[X1]14H[X2].

theorem diff_rdist_le_3 {G : Type u_1} [addgroup : AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (X₁ X₂ X₁' X₂' : ΩG) (hX₁ : Measurable X₁) (hX₂' : Measurable X₂') (h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume) (h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₂', X₁'] MeasureTheory.volume) [Module (ZMod 2) G] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] :
d[p.X₀₁ # X₁ | X₁ + X₂'] - d[p.X₀₁ # X₁] d[X₁ # X₂] / 2 + H[X₁] / 4 - H[X₂] / 4

d[X10;X1|X1+X~2]d[X10;X1]12k+14H[X1]14H[X2].

theorem diff_rdist_le_4 {G : Type u_1} [addgroup : AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (X₁ X₂ X₁' X₂' : ΩG) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume) (h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₂', X₁'] MeasureTheory.volume) [Module (ZMod 2) G] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] :
d[p.X₀₂ # X₂ | X₂ + X₁'] - d[p.X₀₂ # X₂] d[X₁ # X₂] / 2 + H[X₂] / 4 - H[X₁] / 4

d[X20;X2|X2+X~1]d[X20;X2]12k+14H[X2]14H[X1].

theorem first_estimate {G : Type u_1} [addgroup : AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (X₁ X₂ X₁' X₂' : ΩG) (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') (h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume) (h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume) (h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₂', X₁'] MeasureTheory.volume) (h_min : tau_minimizes p X₁ X₂) [Module (ZMod 2) G] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] :
I[X₁ + X₂ : X₁' + X₂|X₁ + X₂ + X₁' + X₂'] 2 * p.η * d[X₁ # X₂]

We have I12ηk

theorem ent_ofsum_le {G : Type u_1} [addgroup : AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (X₁ X₂ X₁' X₂' : ΩG) (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') (h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume) (h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume) (h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₂', X₁'] MeasureTheory.volume) (h_min : tau_minimizes p X₁ X₂) [Module (ZMod 2) G] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] :
H[X₁ + X₂ + X₁' + X₂'] H[X₁] / 2 + H[X₂] / 2 + (2 + p.η) * d[X₁ # X₂] - I[X₁ + X₂ : X₁' + X₂|X₁ + X₂ + X₁' + X₂']

H[X1+X2+X~1+X~2]12H[X1]+12H[X2]+(2+η)kI1.