First estimate #
The first estimate on tau-minimizers.
Assumptions:
are tau-minimizers are independent random variables, with copies of and copies of .
Main results #
theorem
rdist_add_rdist_add_condMutual_eq
{G : Type u_1}
[addgroup : AddCommGroup G]
[Fintype G]
[hG : MeasurableSpace G]
[MeasurableSingletonClass G]
{Ω : Type u_4}
[MeasureTheory.MeasureSpace Ω]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
(X₁ X₂ X₁' X₂' : Ω → G)
(hX₁ : Measurable X₁)
(hX₂ : Measurable X₂)
(hX₁' : Measurable X₁')
(hX₂' : Measurable X₂')
(h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume)
(h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume)
(h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₂', X₁'] MeasureTheory.volume)
[Module (ZMod 2) G]
:
The sum of
theorem
rdist_of_sums_ge
{G : Type u_1}
[addgroup : AddCommGroup G]
[Fintype G]
[hG : MeasurableSpace G]
[MeasurableSingletonClass G]
{Ω₀₁ : Type u_2}
{Ω₀₂ : Type u_3}
[MeasureTheory.MeasureSpace Ω₀₁]
[MeasureTheory.MeasureSpace Ω₀₂]
(p : refPackage Ω₀₁ Ω₀₂ G)
{Ω : Type u_4}
[MeasureTheory.MeasureSpace Ω]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
(X₁ X₂ X₁' X₂' : Ω → G)
(hX₁ : Measurable X₁)
(hX₂ : Measurable X₂)
(hX₁' : Measurable X₁')
(hX₂' : Measurable X₂')
(h_min : tau_minimizes p X₁ X₂)
:
The distance
theorem
condRuzsaDist_of_sums_ge
{G : Type u_1}
[addgroup : AddCommGroup G]
[Fintype G]
[hG : MeasurableSpace G]
[MeasurableSingletonClass G]
{Ω₀₁ : Type u_2}
{Ω₀₂ : Type u_3}
[MeasureTheory.MeasureSpace Ω₀₁]
[MeasureTheory.MeasureSpace Ω₀₂]
(p : refPackage Ω₀₁ Ω₀₂ G)
{Ω : Type u_4}
[MeasureTheory.MeasureSpace Ω]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
(X₁ X₂ X₁' X₂' : Ω → G)
(hX₁ : Measurable X₁)
(hX₂ : Measurable X₂)
(hX₁' : Measurable X₁')
(hX₂' : Measurable X₂')
(h_min : tau_minimizes p X₁ X₂)
:
The distance
theorem
diff_rdist_le_1
{G : Type u_1}
[addgroup : AddCommGroup G]
[Fintype G]
[hG : MeasurableSpace G]
[MeasurableSingletonClass G]
{Ω₀₁ : Type u_2}
{Ω₀₂ : Type u_3}
[MeasureTheory.MeasureSpace Ω₀₁]
[MeasureTheory.MeasureSpace Ω₀₂]
(p : refPackage Ω₀₁ Ω₀₂ G)
{Ω : Type u_4}
[MeasureTheory.MeasureSpace Ω]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
(X₁ X₂ X₁' X₂' : Ω → G)
(hX₁ : Measurable X₁)
(hX₂' : Measurable X₂')
(h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume)
(h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₂', X₁'] MeasureTheory.volume)
[Module (ZMod 2) G]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
:
d[X₀₁ # X₁ + X₂'] - d[X₀₁ # X₁] ≤ k/2 + H[X₂]/4 - H[X₁]/4
.
theorem
diff_rdist_le_2
{G : Type u_1}
[addgroup : AddCommGroup G]
[Fintype G]
[hG : MeasurableSpace G]
[MeasurableSingletonClass G]
{Ω₀₁ : Type u_2}
{Ω₀₂ : Type u_3}
[MeasureTheory.MeasureSpace Ω₀₁]
[MeasureTheory.MeasureSpace Ω₀₂]
(p : refPackage Ω₀₁ Ω₀₂ G)
{Ω : Type u_4}
[MeasureTheory.MeasureSpace Ω]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
(X₁ X₂ X₁' X₂' : Ω → G)
(hX₂ : Measurable X₂)
(hX₁' : Measurable X₁')
(h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume)
(h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₂', X₁'] MeasureTheory.volume)
[Module (ZMod 2) G]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
:
theorem
diff_rdist_le_3
{G : Type u_1}
[addgroup : AddCommGroup G]
[Fintype G]
[hG : MeasurableSpace G]
[MeasurableSingletonClass G]
{Ω₀₁ : Type u_2}
{Ω₀₂ : Type u_3}
[MeasureTheory.MeasureSpace Ω₀₁]
[MeasureTheory.MeasureSpace Ω₀₂]
(p : refPackage Ω₀₁ Ω₀₂ G)
{Ω : Type u_4}
[MeasureTheory.MeasureSpace Ω]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
(X₁ X₂ X₁' X₂' : Ω → G)
(hX₁ : Measurable X₁)
(hX₂' : Measurable X₂')
(h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume)
(h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₂', X₁'] MeasureTheory.volume)
[Module (ZMod 2) G]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
:
theorem
diff_rdist_le_4
{G : Type u_1}
[addgroup : AddCommGroup G]
[Fintype G]
[hG : MeasurableSpace G]
[MeasurableSingletonClass G]
{Ω₀₁ : Type u_2}
{Ω₀₂ : Type u_3}
[MeasureTheory.MeasureSpace Ω₀₁]
[MeasureTheory.MeasureSpace Ω₀₂]
(p : refPackage Ω₀₁ Ω₀₂ G)
{Ω : Type u_4}
[MeasureTheory.MeasureSpace Ω]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
(X₁ X₂ X₁' X₂' : Ω → G)
(hX₂ : Measurable X₂)
(hX₁' : Measurable X₁')
(h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume)
(h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₂', X₁'] MeasureTheory.volume)
[Module (ZMod 2) G]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
:
theorem
first_estimate
{G : Type u_1}
[addgroup : AddCommGroup G]
[Fintype G]
[hG : MeasurableSpace G]
[MeasurableSingletonClass G]
{Ω₀₁ : Type u_2}
{Ω₀₂ : Type u_3}
[MeasureTheory.MeasureSpace Ω₀₁]
[MeasureTheory.MeasureSpace Ω₀₂]
(p : refPackage Ω₀₁ Ω₀₂ G)
{Ω : Type u_4}
[MeasureTheory.MeasureSpace Ω]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
(X₁ X₂ X₁' X₂' : Ω → G)
(hX₁ : Measurable X₁)
(hX₂ : Measurable X₂)
(hX₁' : Measurable X₁')
(hX₂' : Measurable X₂')
(h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume)
(h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume)
(h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₂', X₁'] MeasureTheory.volume)
(h_min : tau_minimizes p X₁ X₂)
[Module (ZMod 2) G]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
:
We have
theorem
ent_ofsum_le
{G : Type u_1}
[addgroup : AddCommGroup G]
[Fintype G]
[hG : MeasurableSpace G]
[MeasurableSingletonClass G]
{Ω₀₁ : Type u_2}
{Ω₀₂ : Type u_3}
[MeasureTheory.MeasureSpace Ω₀₁]
[MeasureTheory.MeasureSpace Ω₀₂]
(p : refPackage Ω₀₁ Ω₀₂ G)
{Ω : Type u_4}
[MeasureTheory.MeasureSpace Ω]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
(X₁ X₂ X₁' X₂' : Ω → G)
(hX₁ : Measurable X₁)
(hX₂ : Measurable X₂)
(hX₁' : Measurable X₁')
(hX₂' : Measurable X₂')
(h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume)
(h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume)
(h_indep : ProbabilityTheory.iIndepFun ![X₁, X₂, X₂', X₁'] MeasureTheory.volume)
(h_min : tau_minimizes p X₁ X₂)
[Module (ZMod 2) G]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
: