Documentation

PFR.TorsionEndgame

Endgame for the Torsion PFR theorem #

theorem sum_of_z_eq_zero {G Ωₒ : Type u} [MeasureableFinGroup G] [MeasureTheory.MeasureSpace Ωₒ] (p : multiRefPackage G Ωₒ) (Ω' : Type u) (Y : Fin p.m × Fin p.mΩ'G) :
i : Fin p.m, j : Fin p.m, i Y (i, j) + i : Fin p.m, j : Fin p.m, j Y (i, j) + i : Fin p.m, j : Fin p.m, (-i - j) Y (i, j) = 0

Z_1+Z_2+Z_3= 0

theorem mutual_information_le_t_12 {G Ωₒ : Type u} [MeasureableFinGroup G] [MeasureTheory.MeasureSpace Ωₒ] (p : multiRefPackage G Ωₒ) (Ω : Fin p.mType u) ( : (i : Fin p.m) → MeasureTheory.MeasureSpace (Ω i)) (X : (i : Fin p.m) → Ω iG) (Ω' : Type u) (Y : Fin p.m × Fin p.mΩ'G) [hΩ' : MeasureTheory.MeasureSpace Ω'] [MeasureTheory.IsFiniteMeasure MeasureTheory.volume] :
I[i : Fin p.m, j : Fin p.m, i Y (i, j) : i : Fin p.m, j : Fin p.m, j Y (i, j)|i : Fin p.m, j : Fin p.m, Y (i, j)] 4 * p.m ^ 2 * p.η * multiTau p Ω X

We have I[Z_1 : Z_2 | W], I[Z_2 : Z_3 | W], I[Z_1 : Z_3 | W] ≤ 4m^2 η k.

theorem mutual_information_le_t_13 {G Ωₒ : Type u} [MeasureableFinGroup G] [MeasureTheory.MeasureSpace Ωₒ] (p : multiRefPackage G Ωₒ) (Ω : Fin p.mType u) ( : (i : Fin p.m) → MeasureTheory.MeasureSpace (Ω i)) (X : (i : Fin p.m) → Ω iG) (Ω' : Type u) (Y : Fin p.m × Fin p.mΩ'G) [hΩ' : MeasureTheory.MeasureSpace Ω'] [MeasureTheory.IsFiniteMeasure MeasureTheory.volume] :
I[i : Fin p.m, j : Fin p.m, i Y (i, j) : i : Fin p.m, j : Fin p.m, (-i - j) Y (i, j)|i : Fin p.m, j : Fin p.m, Y (i, j)] 4 * p.m ^ 2 * p.η * multiTau p Ω X
theorem mutual_information_le_t_23 {G Ωₒ : Type u} [MeasureableFinGroup G] [MeasureTheory.MeasureSpace Ωₒ] (p : multiRefPackage G Ωₒ) (Ω : Fin p.mType u) ( : (i : Fin p.m) → MeasureTheory.MeasureSpace (Ω i)) (X : (i : Fin p.m) → Ω iG) (Ω' : Type u) (Y : Fin p.m × Fin p.mΩ'G) [hΩ' : MeasureTheory.MeasureSpace Ω'] [MeasureTheory.IsFiniteMeasure MeasureTheory.volume] :
I[i : Fin p.m, j : Fin p.m, j Y (i, j) : i : Fin p.m, j : Fin p.m, (-i - j) Y (i, j)|i : Fin p.m, j : Fin p.m, Y (i, j)] 4 * p.m ^ 2 * p.η * multiTau p Ω X
theorem entropy_of_W_le {G Ωₒ : Type u} [MeasureableFinGroup G] [MeasureTheory.MeasureSpace Ωₒ] (p : multiRefPackage G Ωₒ) (Ω : Fin p.mType u) ( : (i : Fin p.m) → MeasureTheory.MeasureSpace (Ω i)) (X : (i : Fin p.m) → Ω iG) (Ω' : Type u) (Y : Fin p.m × Fin p.mΩ'G) [hΩ' : MeasureTheory.MeasureSpace Ω'] [MeasureTheory.IsFiniteMeasure MeasureTheory.volume] {m : } :
H[i : Fin p.m, j : Fin p.m, Y (i, j)] (2 * p.m - 1) * multiTau p Ω X + m⁻¹ * i : Fin p.m, H[X i]

We have \bbH[W](2m1)k+1mi=1m\bbH[Xi].

theorem entropy_of_Z_two_le {G Ωₒ : Type u} [MeasureableFinGroup G] [MeasureTheory.MeasureSpace Ωₒ] (p : multiRefPackage G Ωₒ) (Ω : Fin p.mType u) ( : (i : Fin p.m) → MeasureTheory.MeasureSpace (Ω i)) (X : (i : Fin p.m) → Ω iG) (Ω' : Type u) (Y : Fin p.m × Fin p.mΩ'G) [hΩ' : MeasureTheory.MeasureSpace Ω'] [MeasureTheory.IsFiniteMeasure MeasureTheory.volume] {m : } :
H[i : Fin p.m, j : Fin p.m, j Y (i, j)] (8 * p.m ^ 2 - 16 * p.m + 1) * multiTau p Ω X + m⁻¹ * i : Fin p.m, H[X i]

We have \bbH[Z2](8m216m+1)k+1mi=1m\bbH[Xi].

theorem mutual_of_W_Z_two_le {G Ωₒ : Type u} [MeasureableFinGroup G] [MeasureTheory.MeasureSpace Ωₒ] (p : multiRefPackage G Ωₒ) (Ω : Fin p.mType u) ( : (i : Fin p.m) → MeasureTheory.MeasureSpace (Ω i)) (X : (i : Fin p.m) → Ω iG) (Ω' : Type u) (Y : Fin p.m × Fin p.mΩ'G) [hΩ' : MeasureTheory.MeasureSpace Ω'] [MeasureTheory.IsFiniteMeasure MeasureTheory.volume] :
I[i : Fin p.m, j : Fin p.m, Y (i, j) : i : Fin p.m, j : Fin p.m, j Y (i, j)] 2 * (p.m - 1) * multiTau p Ω X

We have \bbI[W:Z2]2(m1)k.

theorem sum_of_conditional_distance_le {G Ωₒ : Type u} [MeasureableFinGroup G] [MeasureTheory.MeasureSpace Ωₒ] (p : multiRefPackage G Ωₒ) (Ω : Fin p.mType u) ( : (i : Fin p.m) → MeasureTheory.MeasureSpace (Ω i)) (X : (i : Fin p.m) → Ω iG) (Ω' : Type u) (Y : Fin p.m × Fin p.mΩ'G) [hΩ' : MeasureTheory.MeasureSpace Ω'] [MeasureTheory.IsFiniteMeasure MeasureTheory.volume] :
i : Fin p.m, d[X i # i : Fin p.m, j : Fin p.m, j Y (i, j) | i : Fin p.m, j : Fin p.m, Y (i, j)] 8 * (p.m ^ 3 - p.m ^ 2) * multiTau p Ω X

We have i=1md[Xi;Z2|W]8(m3m2)k.

theorem dist_of_U_add_le {G : Type u_1} [MeasureableFinGroup G] {Ω : Type u_2} [MeasureTheory.MeasureSpace Ω] (T₁ T₂ T₃ : ΩG) (hsum : T₁ + T₂ + T₃ = 0) (n : ) {Ω' : Fin nType u_3} (hΩ' : (i : Fin n) → MeasureTheory.MeasureSpace (Ω' i)) (Y : (i : Fin n) → Ω' iG) {α : } ( : α > 0) :
∃ (Ω'' : Type u_4) (hΩ'' : MeasureTheory.MeasureSpace Ω'') (U : Ω''G), d[U # U] + α * i : Fin n, d[Y i # U] (2 + α * n / 2) * (I[T₁ : T₂] + I[T₁ : T₃] + I[T₂ : T₃]) + α * i : Fin n, d[Y i # T₂]

Let G be an abelian group, let (T1,T2,T3) be a G3-valued random variable such that T1+T2+T3=0 holds identically, and write [ \delta := \bbI[T_1 : T_2] + \bbI[T_1 : T_3] + \bbI[T_2 : T_3]. ] Let Y1,,Yn be some further G-valued random variables and let α>0 be a constant. Then there exists a random variable U such that d[U;U]+αi=1nd[Yi;U](2+αn2)δ+αi=1nd[Yi;T2].

theorem k_eq_zero {G Ωₒ : Type u} [MeasureableFinGroup G] [MeasureTheory.MeasureSpace Ωₒ] (p : multiRefPackage G Ωₒ) (Ω : Fin p.mType u) ( : (i : Fin p.m) → MeasureTheory.MeasureSpace (Ω i)) (X : (i : Fin p.m) → Ω iG) :
multiTau p Ω X = 0

We have k=0.

theorem dist_of_X_U_H_le {G : Type u_1} [AddCommGroup G] [Fintype G] [MeasurableSpace G] [MeasurableSingletonClass G] (m : ) (hm : m 2) (htorsion : ∀ (x : G), m x = 0) (Ω : Type u_2) [MeasureTheory.MeasureSpace Ω] (X : ΩG) :
∃ (H : AddSubgroup G) (Ω' : Type u_3) ( : MeasureTheory.MeasureSpace Ω') (U : Ω'G), ProbabilityTheory.IsUniform (↑H) U MeasureTheory.volume d[X # U] 64 * m ^ 3 * d[X # X]

Suppose that G is a finite abelian group of torsion m. Suppose that X is a G-valued random variable. Then there exists a subgroup HG such that [ d[X;U_H] \leq 64 m^3 d[X;X].]

theorem torsion_PFR_conjecture_aux {G : Type u_1} [AddCommGroup G] [Fintype G] {m : } (hm : m 2) (htorsion : ∀ (x : G), m x = 0) {A : Set G} [Finite A] {K : } (h₀A : A.Nonempty) (hA : (Nat.card ↑(A + A)) K * (Nat.card A)) :
∃ (H : AddSubgroup G) (c : Set G), (Nat.card c) K ^ (64 * m ^ 3 + 2) * (Nat.card A) ^ (1 / 2) * (Nat.card H) ^ (-1 / 2) (Nat.card H) K ^ (64 * m ^ 3) * (Nat.card A) (Nat.card A) K ^ (64 * m ^ 3) * (Nat.card H) A c + H

Suppose that G is a finite abelian group of torsion m. If AG is non-empty and |A+A|K|A|, then A can be covered by at most K(64m3+2)/2|A|1/2/|H|1/2 translates of a subspace H of G with |H|/|A|[K64m3,K64m3]

theorem torsion_exists_subgroup_subset_card_le {G : Type u_1} {m : } (hm : m 2) [AddCommGroup G] [Fintype G] (htorsion : ∀ (x : G), m x = 0) {k : } (H : AddSubgroup G) (hk : k Nat.card H) (h'k : k 0) :
∃ (K : AddSubgroup G), Nat.card K k k < m * Nat.card K K H

Every subgroup H of a finite m-torsion abelian group G contains a subgroup H' of order between k and mk, if 0 < k < |H|.

theorem torsion_PFR {G : Type u_1} [AddCommGroup G] [Fintype G] {m : } (hm : m 2) (htorsion : ∀ (x : G), m x = 0) {A : Set G} [Finite A] {K : } (h₀A : A.Nonempty) (hA : (Nat.card ↑(A + A)) K * (Nat.card A)) :
∃ (H : AddSubgroup G) (c : Set G), (Nat.card c) < m * K ^ (96 * m ^ 3 + 2) Nat.card H Nat.card A A c + H

Suppose that G is a finite abelian group of torsion m. If AG is non-empty and |A+A|K|A|, then A can be covered by most mK64m3+1 translates of a subspace H of G with |H||A|.