Documentation

PFR.Mathlib.Probability.ConditionalProbability

TODO #

Less explicit arguments to cond_eq_zero_of_meas_eq_zero

theorem ProbabilityTheory.ae_cond_mem {Ω : Type u_2} {mΩ : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {s : Set Ω} (hs : MeasurableSet s) :
∀ᵐ (x : Ω) ∂ProbabilityTheory.cond μ s, x s
theorem ProbabilityTheory.cond_iInter {ι : Type u_1} {Ω : Type u_2} {α : Type u_3} {β : Type u_4} {mΩ : MeasurableSpace Ω} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure Ω} {X : ιΩα} {Y : ιΩβ} {f : ιSet Ω} {t : ιSet β} {s : Finset ι} [Finite ι] (hY : ∀ (i : ι), Measurable (Y i)) (h_indep : ProbabilityTheory.iIndepFun (fun (x : ι) => .prod ) (fun (i : ι) (ω : Ω) => (X i ω, Y i ω)) μ) (hf : is, MeasurableSet (f i)) (hy : ∀ (i : ι), μ (Y i ⁻¹' t i) 0) (ht : ∀ (i : ι), MeasurableSet (t i)) :
(ProbabilityTheory.cond μ (⋂ (i : ι), Y i ⁻¹' t i)) (⋂ is, f i) = is, (ProbabilityTheory.cond μ (Y i ⁻¹' t i)) (f i)

The probability of an intersection of preimaαes conditioninα on another intersection factors into a product.

theorem ProbabilityTheory.iIndepFun.cond {ι : Type u_1} {Ω : Type u_2} {α : Type u_3} {β : Type u_4} {mΩ : MeasurableSpace Ω} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure Ω} {X : ιΩα} {Y : ιΩβ} {t : ιSet β} [Finite ι] (hY : ∀ (i : ι), Measurable (Y i)) (h_indep : ProbabilityTheory.iIndepFun (fun (x : ι) => .prod ) (fun (i : ι) (ω : Ω) => (X i ω, Y i ω)) μ) (hy : ∀ (i : ι), μ (Y i ⁻¹' t i) 0) (ht : ∀ (i : ι), MeasurableSet (t i)) :
ProbabilityTheory.iIndepFun (fun (x : ι) => ) X (ProbabilityTheory.cond μ (⋂ (i : ι), Y i ⁻¹' t i))