Documentation

PFR.Mathlib.Probability.Independence.Kernel

theorem ProbabilityTheory.Kernel.iIndepFun.finsets {ι : Type u_1} {α : Type u_2} {Ω : Type u_7} {_mα : MeasurableSpace α} {_mΩ : MeasurableSpace Ω} {κ : ProbabilityTheory.Kernel α Ω} {μ : MeasureTheory.Measure α} {β : ιType u_8} {m : (i : ι) → MeasurableSpace (β i)} {f : (i : ι) → Ωβ i} {J : Type u_10} [Fintype J] (S : JFinset ι) (h_disjoint : Set.univ.PairwiseDisjoint S) (hf_Indep : ProbabilityTheory.Kernel.iIndepFun m f κ μ) (hf_meas : ∀ (i : ι), Measurable (f i)) :
ProbabilityTheory.Kernel.iIndepFun (fun (x : J) => MeasurableSpace.pi) (fun (j : J) (a : Ω) (i : { x : ι // x S j }) => f (↑i) a) κ μ

If f is a family of mutually independent random variables, (S j)ⱼ are pairwise disjoint finite index sets, then the tuples formed by f i for i ∈ S j are mutually independent, when seen as a family indexed by J.

theorem ProbabilityTheory.Kernel.iIndepFun.finsets_comp {ι : Type u_1} {α : Type u_2} {Ω : Type u_7} {_mα : MeasurableSpace α} {_mΩ : MeasurableSpace Ω} {κ : ProbabilityTheory.Kernel α Ω} {μ : MeasureTheory.Measure α} {β : ιType u_8} {m : (i : ι) → MeasurableSpace (β i)} {f : (i : ι) → Ωβ i} {J : Type u_10} [Fintype J] (S : JFinset ι) (h_disjoint : Set.univ.PairwiseDisjoint S) (hf_Indep : ProbabilityTheory.Kernel.iIndepFun m f κ μ) (hf_meas : ∀ (i : ι), Measurable (f i)) (γ : JType u_11) {mγ : (j : J) → MeasurableSpace (γ j)} (φ : (j : J) → ((i : { x : ι // x S j }) → β i)γ j) (hφ : ∀ (j : J), Measurable (φ j)) :
ProbabilityTheory.Kernel.iIndepFun (fun (j : J) (a : Ω) => φ j fun (i : { x : ι // x S j }) => f (↑i) a) κ μ

If f is a family of mutually independent random variables, (S j)ⱼ are pairwise disjoint finite index sets, and φ j is a function that maps the tuple formed by f i for i ∈ S j to a measurable space γ j, then the family of random variables formed by φ j (f i)_{i ∈ S j} and indexed by J is iIndep.