theorem
ProbabilityTheory.Kernel.map_map
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
:
∀ {x : MeasurableSpace α} {x_1 : MeasurableSpace β} {x_2 : MeasurableSpace δ} [inst : MeasurableSpace γ]
(κ : ProbabilityTheory.Kernel α β) {f : β → γ},
Measurable f → ∀ {g : γ → δ}, Measurable g → (κ.map f).map g = κ.map (g ∘ f)
theorem
ProbabilityTheory.Kernel.map_swapRight
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
:
∀ {x : MeasurableSpace α} {x_1 : MeasurableSpace β} {x_2 : MeasurableSpace δ} [inst : MeasurableSpace γ]
(κ : ProbabilityTheory.Kernel α (β × γ)) {f : γ × β → δ}, κ.swapRight.map f = κ.map (f ∘ Prod.swap)
@[simp]
theorem
ProbabilityTheory.Kernel.swapLeft_zero
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
:
∀ {x : MeasurableSpace α} {x_1 : MeasurableSpace β} [inst : MeasurableSpace γ], ProbabilityTheory.Kernel.swapLeft 0 = 0
@[simp]
theorem
ProbabilityTheory.Kernel.swapRight_zero
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
:
∀ {x : MeasurableSpace α} {x_1 : MeasurableSpace β} [inst : MeasurableSpace γ], ProbabilityTheory.Kernel.swapRight 0 = 0
@[simp]
theorem
ProbabilityTheory.Kernel.prod_zero_left
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
:
∀ {x : MeasurableSpace α} {x_1 : MeasurableSpace β} [inst : MeasurableSpace γ] (η : ProbabilityTheory.Kernel α γ),
ProbabilityTheory.Kernel.prod 0 η = 0
@[simp]
theorem
ProbabilityTheory.Kernel.prod_zero_right
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
:
∀ {x : MeasurableSpace α} {x_1 : MeasurableSpace β} [inst : MeasurableSpace γ] (κ : ProbabilityTheory.Kernel α β),
κ.prod 0 = 0
noncomputable def
ProbabilityTheory.Kernel.deleteMiddle
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
:
{x : MeasurableSpace α} →
{x_1 : MeasurableSpace β} →
{x_2 : MeasurableSpace δ} →
[inst : MeasurableSpace γ] → ProbabilityTheory.Kernel α (β × γ × δ) → ProbabilityTheory.Kernel α (β × δ)
Given a kernel taking values in a product of three spaces, forget the middle one.
Instances For
theorem
ProbabilityTheory.Kernel.deleteMiddle_eq
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
:
∀ {x : MeasurableSpace α} {x_1 : MeasurableSpace β} {x_2 : MeasurableSpace δ} [inst : MeasurableSpace γ]
(κ : ProbabilityTheory.Kernel α (β × γ × δ)), κ.deleteMiddle = κ.map fun (p : β × γ × δ) => (p.1, p.2.2)
instance
ProbabilityTheory.Kernel.instIsMarkovKernelProdDeleteMiddle
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
:
∀ {x : MeasurableSpace α} {x_1 : MeasurableSpace β} {x_2 : MeasurableSpace δ} [inst : MeasurableSpace γ]
(κ : ProbabilityTheory.Kernel α (β × γ × δ)) [inst_1 : ProbabilityTheory.IsMarkovKernel κ],
ProbabilityTheory.IsMarkovKernel κ.deleteMiddle
Equations
- ⋯ = ⋯
instance
ProbabilityTheory.Kernel.instIsZeroOrMarkovKernelProdDeleteMiddle
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
:
∀ {x : MeasurableSpace α} {x_1 : MeasurableSpace β} {x_2 : MeasurableSpace δ} [inst : MeasurableSpace γ]
(κ : ProbabilityTheory.Kernel α (β × γ × δ)) [inst_1 : ProbabilityTheory.IsZeroOrMarkovKernel κ],
ProbabilityTheory.IsZeroOrMarkovKernel κ.deleteMiddle
Equations
- ⋯ = ⋯
@[simp]
theorem
ProbabilityTheory.Kernel.fst_deleteMiddle
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
:
∀ {x : MeasurableSpace α} {x_1 : MeasurableSpace β} {x_2 : MeasurableSpace δ} [inst : MeasurableSpace γ]
(κ : ProbabilityTheory.Kernel α (β × γ × δ)), κ.deleteMiddle.fst = κ.fst
@[simp]
theorem
ProbabilityTheory.Kernel.snd_deleteMiddle
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
:
∀ {x : MeasurableSpace α} {x_1 : MeasurableSpace β} {x_2 : MeasurableSpace δ} [inst : MeasurableSpace γ]
(κ : ProbabilityTheory.Kernel α (β × γ × δ)), κ.deleteMiddle.snd = κ.snd.snd
@[simp]
theorem
ProbabilityTheory.Kernel.deleteMiddle_zero
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
:
∀ {x : MeasurableSpace α} {x_1 : MeasurableSpace β} {x_2 : MeasurableSpace δ} [inst : MeasurableSpace γ],
ProbabilityTheory.Kernel.deleteMiddle 0 = 0
@[simp]
theorem
ProbabilityTheory.Kernel.deleteMiddle_map_prod
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
{ε : Type u_5}
:
∀ {x : MeasurableSpace α} {x_1 : MeasurableSpace β} {x_2 : MeasurableSpace δ} {x_3 : MeasurableSpace ε}
[inst : MeasurableSpace γ] (κ : ProbabilityTheory.Kernel α β) {f : β → γ} {g : β → δ} {g' : β → ε},
Measurable g → (κ.map fun (b : β) => (f b, g b, g' b)).deleteMiddle = κ.map fun (b : β) => (f b, g' b)
@[simp]
theorem
ProbabilityTheory.Kernel.deleteMiddle_compProd
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
:
∀ {x : MeasurableSpace α} {x_1 : MeasurableSpace β} {x_2 : MeasurableSpace δ} [inst : MeasurableSpace γ]
(ξ : ProbabilityTheory.Kernel α β) [inst_1 : ProbabilityTheory.IsSFiniteKernel ξ]
(κ : ProbabilityTheory.Kernel (α × β) (γ × δ)) [inst_2 : ProbabilityTheory.IsSFiniteKernel κ],
(ξ.compProd κ).deleteMiddle = ξ.compProd κ.snd
noncomputable def
ProbabilityTheory.Kernel.deleteRight
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
:
{x : MeasurableSpace α} →
{x_1 : MeasurableSpace β} →
{x_2 : MeasurableSpace δ} →
[inst : MeasurableSpace γ] → ProbabilityTheory.Kernel α (β × γ × δ) → ProbabilityTheory.Kernel α (β × γ)
Given a kernel taking values in a product of three spaces, forget the last variable.
Instances For
theorem
ProbabilityTheory.Kernel.deleteRight_eq
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
:
∀ {x : MeasurableSpace α} {x_1 : MeasurableSpace β} {x_2 : MeasurableSpace δ} [inst : MeasurableSpace γ]
(κ : ProbabilityTheory.Kernel α (β × γ × δ)), κ.deleteRight = κ.map fun (p : β × γ × δ) => (p.1, p.2.1)
@[simp]
theorem
ProbabilityTheory.Kernel.deleteRight_zero
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
:
∀ {x : MeasurableSpace α} {x_1 : MeasurableSpace β} {x_2 : MeasurableSpace δ} [inst : MeasurableSpace γ],
ProbabilityTheory.Kernel.deleteRight 0 = 0
instance
ProbabilityTheory.Kernel.instIsMarkovKernelProdDeleteRight
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
:
∀ {x : MeasurableSpace α} {x_1 : MeasurableSpace β} {x_2 : MeasurableSpace δ} [inst : MeasurableSpace γ]
(κ : ProbabilityTheory.Kernel α (β × γ × δ)) [inst_1 : ProbabilityTheory.IsMarkovKernel κ],
ProbabilityTheory.IsMarkovKernel κ.deleteRight
Equations
- ⋯ = ⋯
instance
ProbabilityTheory.Kernel.instIsZeroOrMarkovKernelProdDeleteRight
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
:
∀ {x : MeasurableSpace α} {x_1 : MeasurableSpace β} {x_2 : MeasurableSpace δ} [inst : MeasurableSpace γ]
(κ : ProbabilityTheory.Kernel α (β × γ × δ)) [inst_1 : ProbabilityTheory.IsZeroOrMarkovKernel κ],
ProbabilityTheory.IsZeroOrMarkovKernel κ.deleteRight
Equations
- ⋯ = ⋯
@[simp]
theorem
ProbabilityTheory.Kernel.fst_deleteRight
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
:
∀ {x : MeasurableSpace α} {x_1 : MeasurableSpace β} {x_2 : MeasurableSpace δ} [inst : MeasurableSpace γ]
(κ : ProbabilityTheory.Kernel α (β × γ × δ)), κ.deleteRight.fst = κ.fst
@[simp]
theorem
ProbabilityTheory.Kernel.snd_deleteRight
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
:
∀ {x : MeasurableSpace α} {x_1 : MeasurableSpace β} {x_2 : MeasurableSpace δ} [inst : MeasurableSpace γ]
(κ : ProbabilityTheory.Kernel α (β × γ × δ)), κ.deleteRight.snd = κ.snd.fst
@[simp]
theorem
ProbabilityTheory.Kernel.deleteRight_map_prod
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
{ε : Type u_5}
:
∀ {x : MeasurableSpace α} {x_1 : MeasurableSpace β} {x_2 : MeasurableSpace δ} {x_3 : MeasurableSpace ε}
[inst : MeasurableSpace γ] (κ : ProbabilityTheory.Kernel α β) {f : β → γ} {g : β → δ} {g' : β → ε},
Measurable g' → (κ.map fun (b : β) => (f b, g b, g' b)).deleteRight = κ.map fun (b : β) => (f b, g b)
noncomputable def
ProbabilityTheory.Kernel.reverse
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
:
{x : MeasurableSpace α} →
{x_1 : MeasurableSpace β} →
{x_2 : MeasurableSpace δ} →
[inst : MeasurableSpace γ] → ProbabilityTheory.Kernel α (β × γ × δ) → ProbabilityTheory.Kernel α (δ × γ × β)
Given a kernel taking values in a product of three spaces, reverse the order of the spaces.
Instances For
theorem
ProbabilityTheory.Kernel.reverse_eq
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
:
∀ {x : MeasurableSpace α} {x_1 : MeasurableSpace β} {x_2 : MeasurableSpace δ} [inst : MeasurableSpace γ]
(κ : ProbabilityTheory.Kernel α (β × γ × δ)), κ.reverse = κ.map fun (p : β × γ × δ) => (p.2.2, p.2.1, p.1)
theorem
ProbabilityTheory.Kernel.reverse_zero
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
:
∀ {x : MeasurableSpace α} {x_1 : MeasurableSpace β} {x_2 : MeasurableSpace δ} [inst : MeasurableSpace γ],
ProbabilityTheory.Kernel.reverse 0 = 0
@[simp]
theorem
ProbabilityTheory.Kernel.reverse_reverse
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
:
∀ {x : MeasurableSpace α} {x_1 : MeasurableSpace β} {x_2 : MeasurableSpace δ} [inst : MeasurableSpace γ]
(κ : ProbabilityTheory.Kernel α (β × γ × δ)), κ.reverse.reverse = κ
instance
ProbabilityTheory.Kernel.instIsMarkovKernelProdReverse
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
:
∀ {x : MeasurableSpace α} {x_1 : MeasurableSpace β} {x_2 : MeasurableSpace δ} [inst : MeasurableSpace γ]
(κ : ProbabilityTheory.Kernel α (β × γ × δ)) [inst_1 : ProbabilityTheory.IsMarkovKernel κ],
ProbabilityTheory.IsMarkovKernel κ.reverse
Equations
- ⋯ = ⋯
instance
ProbabilityTheory.Kernel.instIsZeroOrMarkovKernelProdReverse
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
:
∀ {x : MeasurableSpace α} {x_1 : MeasurableSpace β} {x_2 : MeasurableSpace δ} [inst : MeasurableSpace γ]
(κ : ProbabilityTheory.Kernel α (β × γ × δ)) [inst_1 : ProbabilityTheory.IsZeroOrMarkovKernel κ],
ProbabilityTheory.IsZeroOrMarkovKernel κ.reverse
Equations
- ⋯ = ⋯
@[simp]
theorem
ProbabilityTheory.Kernel.swapRight_deleteMiddle_reverse
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
:
∀ {x : MeasurableSpace α} {x_1 : MeasurableSpace β} {x_2 : MeasurableSpace δ} [inst : MeasurableSpace γ]
(κ : ProbabilityTheory.Kernel α (β × γ × δ)), κ.reverse.deleteMiddle.swapRight = κ.deleteMiddle
@[simp]
theorem
ProbabilityTheory.Kernel.swapRight_snd_reverse
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
:
∀ {x : MeasurableSpace α} {x_1 : MeasurableSpace β} {x_2 : MeasurableSpace δ} [inst : MeasurableSpace γ]
(κ : ProbabilityTheory.Kernel α (β × γ × δ)), κ.reverse.snd.swapRight = κ.deleteRight
@[simp]
theorem
ProbabilityTheory.Kernel.swapRight_deleteRight_reverse
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
:
∀ {x : MeasurableSpace α} {x_1 : MeasurableSpace β} {x_2 : MeasurableSpace δ} [inst : MeasurableSpace γ]
(κ : ProbabilityTheory.Kernel α (β × γ × δ)), κ.reverse.deleteRight.swapRight = κ.snd
theorem
ProbabilityTheory.Kernel.FiniteKernelSupport.reverse
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
:
∀ {x : MeasurableSpace α} {x_1 : MeasurableSpace β} {T : Type u_8} [inst : MeasurableSpace T]
[inst_1 : MeasurableSpace γ] [inst_2 : MeasurableSingletonClass α] [inst_3 : MeasurableSingletonClass β]
[inst_4 : MeasurableSingletonClass γ] {κ : ProbabilityTheory.Kernel T (α × β × γ)},
κ.FiniteKernelSupport → κ.reverse.FiniteKernelSupport
Reversing preserves finite kernel support
theorem
ProbabilityTheory.Kernel.AEFiniteKernelSupport.reverse
{β : Type u_2}
{γ : Type u_3}
:
∀ {x : MeasurableSpace β} {S : Type u_7} {T : Type u_8} [inst : MeasurableSpace S] [inst_1 : MeasurableSpace T]
[inst_2 : MeasurableSpace γ] [inst_3 : MeasurableSingletonClass S] [inst_4 : MeasurableSingletonClass β]
[inst_5 : MeasurableSingletonClass γ] {κ : ProbabilityTheory.Kernel T (S × β × γ)} {μ : MeasureTheory.Measure T},
κ.AEFiniteKernelSupport μ → κ.reverse.AEFiniteKernelSupport μ