Documentation

Std.Data.DTreeMap.Internal.Queries

Low-level implementation of the size-bounded tree #

This file contains the basic definition implementing the functionality of the size-bounded trees.

def Std.DTreeMap.Internal.Impl.contains {α : Type u} {β : αType v} [Ord α] (k : α) (t : Impl α β) :

Returns true if the given key is contained in the map.

Equations
theorem Std.DTreeMap.Internal.Impl.Ordered.mem_inner_iff_mem_right {α : Type u} {β : αType v} [Ord α] (sz : Nat) (a : α) (v : β a) (l r : Impl α β) (k : α) (h : compare k a = Ordering.gt) :
k inner sz a v l r k r
theorem Std.DTreeMap.Internal.Impl.Ordered.mem_inner_iff_mem_left {α : Type u} {β : αType v} [Ord α] (sz : Nat) (a : α) (v : β a) (l r : Impl α β) (k : α) (h : compare k a = Ordering.lt) :
k inner sz a v l r k l
@[inline]
def Std.DTreeMap.Internal.Impl.isEmpty {α : Type u} {β : αType v} (t : Impl α β) :

Returns true if the tree is empty.

Equations
def Std.DTreeMap.Internal.Impl.get? {α : Type u} {β : αType v} [Ord α] [LawfulEqOrd α] (t : Impl α β) (k : α) :
Option (β k)

Returns the value for the key k, or none if such a key does not exist.

Equations
def Std.DTreeMap.Internal.Impl.get {α : Type u} {β : αType v} [Ord α] [LawfulEqOrd α] (t : Impl α β) (k : α) (hlk : contains k t = true) :
β k

Returns the value for the key k.

Equations
def Std.DTreeMap.Internal.Impl.get! {α : Type u} {β : αType v} [Ord α] [LawfulEqOrd α] (t : Impl α β) (k : α) [Inhabited (β k)] :
β k

Returns the value for the key k, or panics if such a key does not exist.

Equations
def Std.DTreeMap.Internal.Impl.getD {α : Type u} {β : αType v} [Ord α] [LawfulEqOrd α] (t : Impl α β) (k : α) (fallback : β k) :
β k

Returns the value for the key k, or fallback if such a key does not exist.

Equations
def Std.DTreeMap.Internal.Impl.getKey? {α : Type u} {β : αType v} [Ord α] (t : Impl α β) (k : α) :

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.getKey {α : Type u} {β : αType v} [Ord α] (t : Impl α β) (k : α) (hlk : contains k t = true) :
α

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.getKey! {α : Type u} {β : αType v} [Ord α] (t : Impl α β) (k : α) [Inhabited α] :
α

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.getKeyD {α : Type u} {β : αType v} [Ord α] (t : Impl α β) (k fallback : α) :
α

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.Const.get? {α : Type u} {δ : Type w} [Ord α] (t : Impl α fun (x : α) => δ) (k : α) :

Returns the value for the key k, or none if such a key does not exist.

Equations
def Std.DTreeMap.Internal.Impl.Const.get {α : Type u} {δ : Type w} [Ord α] (t : Impl α fun (x : α) => δ) (k : α) (hlk : contains k t = true) :
δ

Returns the value for the key k.

Equations
  • One or more equations did not get rendered due to their size.
def Std.DTreeMap.Internal.Impl.Const.get! {α : Type u} {δ : Type w} [Ord α] (t : Impl α fun (x : α) => δ) (k : α) [Inhabited δ] :
δ

Returns the value for the key k, or panics if such a key does not exist.

Equations
  • One or more equations did not get rendered due to their size.
def Std.DTreeMap.Internal.Impl.Const.getD {α : Type u} {δ : Type w} [Ord α] (t : Impl α fun (x : α) => δ) (k : α) (fallback : δ) :
δ

Returns the value for the key k, or fallback if such a key does not exist.

Equations
@[specialize #[]]
def Std.DTreeMap.Internal.Impl.foldlM {α : Type u} {β : αType v} {δ : Type w} {m : Type w → Type u_1} [Monad m] (f : δ(a : α) → β am δ) (init : δ) :
Impl α βm δ

Folds the given function over the mappings in the tree in ascending order.

Equations
@[specialize #[]]
def Std.DTreeMap.Internal.Impl.foldl {α : Type u} {β : αType v} {δ : Type w} (f : δ(a : α) → β aδ) (init : δ) (t : Impl α β) :
δ

Folds the given function over the mappings in the tree in ascending order.

Equations
@[specialize #[]]
def Std.DTreeMap.Internal.Impl.foldrM {α : Type u} {β : αType v} {δ : Type w} {m : Type w → Type u_1} [Monad m] (f : (a : α) → β aδm δ) (init : δ) :
Impl α βm δ

Folds the given function over the mappings in the tree in descending order.

Equations
@[inline]
def Std.DTreeMap.Internal.Impl.foldr {α : Type u} {β : αType v} {δ : Type w} (f : (a : α) → β aδδ) (init : δ) (t : Impl α β) :
δ

Folds the given function over the mappings in the tree in descending order.

Equations
@[inline]
def Std.DTreeMap.Internal.Impl.forM {α : Type u} {β : αType v} {m : Type u_1 → Type u_2} [Monad m] (f : (a : α) → β am PUnit) (t : Impl α β) :

Applies the given function to the mappings in the tree in ascending order.

Equations
@[specialize #[]]
def Std.DTreeMap.Internal.Impl.forInStep {α : Type u} {β : αType v} {δ : Type w} {m : Type w → Type u_1} [Monad m] (f : δ(a : α) → β am (ForInStep δ)) (init : δ) :
Impl α βm (ForInStep δ)

Implementation detail.

Equations
@[inline]
def Std.DTreeMap.Internal.Impl.forIn {α : Type u} {β : αType v} {δ : Type w} {m : Type w → Type u_1} [Monad m] (f : δ(a : α) → β am (ForInStep δ)) (init : δ) (t : Impl α β) :
m δ

Support for the for construct in do blocks.

Equations
  • One or more equations did not get rendered due to their size.
@[inline]
def Std.DTreeMap.Internal.Impl.keys {α : Type u} {β : αType v} (t : Impl α β) :
List α

Returns a List of the keys in order.

Equations
@[inline]
def Std.DTreeMap.Internal.Impl.keysArray {α : Type u} {β : αType v} (t : Impl α β) :

Returns an Array of the keys in order.

Equations
@[inline]
def Std.DTreeMap.Internal.Impl.values {α : Type u} {β : Type v} (t : Impl α fun (x : α) => β) :
List β

Returns a List of the values in order.

Equations
@[inline]
def Std.DTreeMap.Internal.Impl.valuesArray {α : Type u} {β : Type v} (t : Impl α fun (x : α) => β) :

Returns an Array of the values in order.

Equations
@[inline]
def Std.DTreeMap.Internal.Impl.toList {α : Type u} {β : αType v} (t : Impl α β) :
List ((a : α) × β a)

Returns a List of the key/value pairs in order.

Equations
@[inline]
def Std.DTreeMap.Internal.Impl.toArray {α : Type u} {β : αType v} (t : Impl α β) :
Array ((a : α) × β a)

Returns an Array of the key/value pairs in order.

Equations
@[inline]
def Std.DTreeMap.Internal.Impl.Const.toList {α : Type u} {β : Type v} (t : Impl α fun (x : α) => β) :
List (α × β)

Returns a List of the key/value pairs in order.

Equations
@[inline]
def Std.DTreeMap.Internal.Impl.Const.toArray {α : Type u} {β : Type v} (t : Impl α fun (x : α) => β) :
Array (α × β)

Returns a List of the key/value pairs in order.

Equations
def Std.DTreeMap.Internal.Impl.min? {α : Type u} {β : αType v} [Ord α] :
Impl α βOption ((a : α) × β a)

Implementation detail of the tree map

Equations
@[irreducible]
def Std.DTreeMap.Internal.Impl.min {α : Type u} {β : αType v} [Ord α] (t : Impl α β) (h : t.isEmpty = false) :
(a : α) × β a

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.min! {α : Type u} {β : αType v} [Ord α] [Inhabited ((a : α) × β a)] :
Impl α β(a : α) × β a

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.minD {α : Type u} {β : αType v} [Ord α] :
Impl α β(a : α) × β a(a : α) × β a

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.max? {α : Type u} {β : αType v} [Ord α] :
Impl α βOption ((a : α) × β a)

Implementation detail of the tree map

Equations
@[irreducible]
def Std.DTreeMap.Internal.Impl.max {α : Type u} {β : αType v} [Ord α] (t : Impl α β) (h : t.isEmpty = false) :
(a : α) × β a

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.max! {α : Type u} {β : αType v} [Ord α] [Inhabited ((a : α) × β a)] :
Impl α β(a : α) × β a

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.maxD {α : Type u} {β : αType v} [Ord α] :
Impl α β(a : α) × β a(a : α) × β a

Implementation detail of the tree map

Equations
@[irreducible]
def Std.DTreeMap.Internal.Impl.minKey {α : Type u} {β : αType v} [Ord α] (t : Impl α β) (h : t.isEmpty = false) :
α

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.minKey! {α : Type u} {β : αType v} [Ord α] [Inhabited α] :
Impl α βα

The smallest key of t. Returns the given fallback value if the map is empty.

Equations
def Std.DTreeMap.Internal.Impl.minKeyD {α : Type u} {β : αType v} [Ord α] :
Impl α βαα

Implementation detail of the tree map

Equations
@[irreducible]
def Std.DTreeMap.Internal.Impl.maxKey {α : Type u} {β : αType v} [Ord α] (t : Impl α β) (h : t.isEmpty = false) :
α

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.maxKey! {α : Type u} {β : αType v} [Ord α] [Inhabited α] :
Impl α βα

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.maxKeyD {α : Type u} {β : αType v} [Ord α] :
Impl α βαα

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.entryAtIdx {α : Type u} {β : αType v} [Ord α] (t : Impl α β) (hl : t.Balanced) (n : Nat) (h : n < t.size) :
(a : α) × β a

Implementation detail of the tree map

Equations
  • One or more equations did not get rendered due to their size.
def Std.DTreeMap.Internal.Impl.entryAtIdx? {α : Type u} {β : αType v} [Ord α] :
Impl α βNatOption ((a : α) × β a)

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.entryAtIdx! {α : Type u} {β : αType v} [Ord α] [Inhabited ((a : α) × β a)] :
Impl α βNat(a : α) × β a

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.entryAtIdxD {α : Type u} {β : αType v} [Ord α] :
Impl α βNat(a : α) × β a(a : α) × β a

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.keyAtIndex {α : Type u} {β : αType v} [Ord α] (t : Impl α β) (hl : t.Balanced) (n : Nat) (h : n < t.size) :
α

Implementation detail of the tree map

Equations
  • One or more equations did not get rendered due to their size.
def Std.DTreeMap.Internal.Impl.keyAtIndex? {α : Type u} {β : αType v} [Ord α] :
Impl α βNatOption α

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.keyAtIndex! {α : Type u} {β : αType v} [Ord α] [Inhabited α] :
Impl α βNatα

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.keyAtIndexD {α : Type u} {β : αType v} [Ord α] :
Impl α βNatαα

Implementation detail of the tree map

Equations
@[inline]
def Std.DTreeMap.Internal.Impl.getEntryGE? {α : Type u} {β : αType v} [Ord α] (k : α) :
Impl α βOption ((a : α) × β a)

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.getEntryGE?.go {α : Type u} {β : αType v} [Ord α] (k : α) (best : Option ((a : α) × β a)) :
Impl α βOption ((a : α) × β a)
Equations
@[inline]
def Std.DTreeMap.Internal.Impl.getEntryGT? {α : Type u} {β : αType v} [Ord α] (k : α) :
Impl α βOption ((a : α) × β a)

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.getEntryGT?.go {α : Type u} {β : αType v} [Ord α] (k : α) (best : Option ((a : α) × β a)) :
Impl α βOption ((a : α) × β a)
Equations
@[inline]
def Std.DTreeMap.Internal.Impl.getEntryLE? {α : Type u} {β : αType v} [Ord α] (k : α) :
Impl α βOption ((a : α) × β a)

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.getEntryLE?.go {α : Type u} {β : αType v} [Ord α] (k : α) (best : Option ((a : α) × β a)) :
Impl α βOption ((a : α) × β a)
Equations
@[inline]
def Std.DTreeMap.Internal.Impl.getEntryLT? {α : Type u} {β : αType v} [Ord α] (k : α) :
Impl α βOption ((a : α) × β a)

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.getEntryLT?.go {α : Type u} {β : αType v} [Ord α] (k : α) (best : Option ((a : α) × β a)) :
Impl α βOption ((a : α) × β a)
Equations
@[inline]
def Std.DTreeMap.Internal.Impl.getEntryGE! {α : Type u} {β : αType v} [Ord α] [Inhabited ((a : α) × β a)] (k : α) (t : Impl α β) :
(a : α) × β a

Implementation detail of the tree map

Equations
@[inline]
def Std.DTreeMap.Internal.Impl.getEntryGT! {α : Type u} {β : αType v} [Ord α] [Inhabited ((a : α) × β a)] (k : α) (t : Impl α β) :
(a : α) × β a

Implementation detail of the tree map

Equations
@[inline]
def Std.DTreeMap.Internal.Impl.getEntryLE! {α : Type u} {β : αType v} [Ord α] [Inhabited ((a : α) × β a)] (k : α) (t : Impl α β) :
(a : α) × β a

Implementation detail of the tree map

Equations
@[inline]
def Std.DTreeMap.Internal.Impl.getEntryLT! {α : Type u} {β : αType v} [Ord α] [Inhabited ((a : α) × β a)] (k : α) (t : Impl α β) :
(a : α) × β a

Implementation detail of the tree map

Equations
@[inline]
def Std.DTreeMap.Internal.Impl.getEntryGED {α : Type u} {β : αType v} [Ord α] (k : α) (t : Impl α β) (fallback : (a : α) × β a) :
(a : α) × β a

Implementation detail of the tree map

Equations
@[inline]
def Std.DTreeMap.Internal.Impl.getEntryGTD {α : Type u} {β : αType v} [Ord α] (k : α) (t : Impl α β) (fallback : (a : α) × β a) :
(a : α) × β a

Implementation detail of the tree map

Equations
@[inline]
def Std.DTreeMap.Internal.Impl.getEntryLED {α : Type u} {β : αType v} [Ord α] (k : α) (t : Impl α β) (fallback : (a : α) × β a) :
(a : α) × β a

Implementation detail of the tree map

Equations
@[inline]
def Std.DTreeMap.Internal.Impl.getEntryLTD {α : Type u} {β : αType v} [Ord α] (k : α) (t : Impl α β) (fallback : (a : α) × β a) :
(a : α) × β a

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.getEntryGE {α : Type u} {β : αType v} [Ord α] [TransOrd α] (k : α) (t : Impl α β) (ho : t.Ordered) (he : (a : α), a t (compare a k).isGE = true) :
(a : α) × β a

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.getEntryGT {α : Type u} {β : αType v} [Ord α] [TransOrd α] (k : α) (t : Impl α β) (ho : t.Ordered) (he : (a : α), a t compare a k = Ordering.gt) :
(a : α) × β a

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.getEntryLE {α : Type u} {β : αType v} [Ord α] [TransOrd α] (k : α) (t : Impl α β) (ho : t.Ordered) (he : (a : α), a t (compare a k).isLE = true) :
(a : α) × β a

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.getEntryLT {α : Type u} {β : αType v} [Ord α] [TransOrd α] (k : α) (t : Impl α β) (ho : t.Ordered) (he : (a : α), a t compare a k = Ordering.lt) :
(a : α) × β a

Implementation detail of the tree map

Equations
@[inline]
def Std.DTreeMap.Internal.Impl.getKeyGE? {α : Type u} {β : αType v} [Ord α] (k : α) :
Impl α βOption α

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.getKeyGE?.go {α : Type u} {β : αType v} [Ord α] (k : α) (best : Option α) :
Impl α βOption α
Equations
@[inline]
def Std.DTreeMap.Internal.Impl.getKeyGT? {α : Type u} {β : αType v} [Ord α] (k : α) :
Impl α βOption α

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.getKeyGT?.go {α : Type u} {β : αType v} [Ord α] (k : α) (best : Option α) :
Impl α βOption α
Equations
@[inline]
def Std.DTreeMap.Internal.Impl.getKeyLE? {α : Type u} {β : αType v} [Ord α] (k : α) :
Impl α βOption α

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.getKeyLE?.go {α : Type u} {β : αType v} [Ord α] (k : α) (best : Option α) :
Impl α βOption α
Equations
@[inline]
def Std.DTreeMap.Internal.Impl.getKeyLT? {α : Type u} {β : αType v} [Ord α] (k : α) :
Impl α βOption α

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.getKeyLT?.go {α : Type u} {β : αType v} [Ord α] (k : α) (best : Option α) :
Impl α βOption α
Equations
@[inline]
def Std.DTreeMap.Internal.Impl.getKeyGE! {α : Type u} {β : αType v} [Ord α] [Inhabited α] (k : α) (t : Impl α β) :
α

Implementation detail of the tree map

Equations
@[inline]
def Std.DTreeMap.Internal.Impl.getKeyGT! {α : Type u} {β : αType v} [Ord α] [Inhabited α] (k : α) (t : Impl α β) :
α

Implementation detail of the tree map

Equations
@[inline]
def Std.DTreeMap.Internal.Impl.getKeyLE! {α : Type u} {β : αType v} [Ord α] [Inhabited α] (k : α) (t : Impl α β) :
α

Implementation detail of the tree map

Equations
@[inline]
def Std.DTreeMap.Internal.Impl.getKeyLT! {α : Type u} {β : αType v} [Ord α] [Inhabited α] (k : α) (t : Impl α β) :
α

Implementation detail of the tree map

Equations
@[inline]
def Std.DTreeMap.Internal.Impl.getKeyGED {α : Type u} {β : αType v} [Ord α] (k : α) (t : Impl α β) (fallback : α) :
α

Implementation detail of the tree map

Equations
@[inline]
def Std.DTreeMap.Internal.Impl.getKeyGTD {α : Type u} {β : αType v} [Ord α] (k : α) (t : Impl α β) (fallback : α) :
α

Implementation detail of the tree map

Equations
@[inline]
def Std.DTreeMap.Internal.Impl.getKeyLED {α : Type u} {β : αType v} [Ord α] (k : α) (t : Impl α β) (fallback : α) :
α

Implementation detail of the tree map

Equations
@[inline]
def Std.DTreeMap.Internal.Impl.getKeyLTD {α : Type u} {β : αType v} [Ord α] (k : α) (t : Impl α β) (fallback : α) :
α

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.getKeyGE {α : Type u} {β : αType v} [Ord α] [TransOrd α] (k : α) (t : Impl α β) (ho : t.Ordered) (he : (a : α), a t (compare a k).isGE = true) :
α

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.getKeyGT {α : Type u} {β : αType v} [Ord α] [TransOrd α] (k : α) (t : Impl α β) (ho : t.Ordered) (he : (a : α), a t compare a k = Ordering.gt) :
α

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.getKeyLE {α : Type u} {β : αType v} [Ord α] [TransOrd α] (k : α) (t : Impl α β) (ho : t.Ordered) (he : (a : α), a t (compare a k).isLE = true) :
α

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.getKeyLT {α : Type u} {β : αType v} [Ord α] [TransOrd α] (k : α) (t : Impl α β) (ho : t.Ordered) (he : (a : α), a t compare a k = Ordering.lt) :
α

Implementation detail of the tree map

Equations
@[irreducible]
def Std.DTreeMap.Internal.Impl.Const.min {α : Type u} {β : Type v} [Ord α] (t : Impl α fun (x : α) => β) (h : t.isEmpty = false) :
α × β

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.Const.min! {α : Type u} {β : Type v} [Ord α] [Inhabited (α × β)] :
(Impl α fun (x : α) => β)α × β

Implementation detail of the tree map

Equations
@[irreducible]
def Std.DTreeMap.Internal.Impl.Const.max {α : Type u} {β : Type v} [Ord α] (t : Impl α fun (x : α) => β) (h : t.isEmpty = false) :
α × β

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.Const.max! {α : Type u} {β : Type v} [Ord α] [Inhabited (α × β)] :
(Impl α fun (x : α) => β)α × β

Implementation detail of the tree map

Equations
@[inline]
def Std.DTreeMap.Internal.Impl.Const.entryAtIdx {α : Type u} {β : Type v} [Ord α] (t : Impl α fun (x : α) => β) (hl : t.Balanced) (n : Nat) (h : n < t.size) :
α × β

Implementation detail of the tree map

Equations
  • One or more equations did not get rendered due to their size.
def Std.DTreeMap.Internal.Impl.Const.entryAtIdx? {α : Type u} {β : Type v} [Ord α] :
(Impl α fun (x : α) => β)NatOption (α × β)

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.Const.entryAtIdx! {α : Type u} {β : Type v} [Ord α] [Inhabited (α × β)] :
(Impl α fun (x : α) => β)Natα × β

Implementation detail of the tree map

Equations
  • One or more equations did not get rendered due to their size.
def Std.DTreeMap.Internal.Impl.Const.entryAtIdxD {α : Type u} {β : Type v} [Ord α] :
(Impl α fun (x : α) => β)Natα × βα × β

Implementation detail of the tree map

Equations
@[inline]
def Std.DTreeMap.Internal.Impl.Const.getEntryGE? {α : Type u} {β : Type v} [Ord α] (k : α) :
(Impl α fun (x : α) => β)Option (α × β)

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.Const.getEntryGE?.go {α : Type u} {β : Type v} [Ord α] (k : α) (best : Option (α × β)) :
(Impl α fun (x : α) => β)Option (α × β)
Equations
@[inline]
def Std.DTreeMap.Internal.Impl.Const.getEntryGT? {α : Type u} {β : Type v} [Ord α] (k : α) :
(Impl α fun (x : α) => β)Option (α × β)

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.Const.getEntryGT?.go {α : Type u} {β : Type v} [Ord α] (k : α) (best : Option (α × β)) :
(Impl α fun (x : α) => β)Option (α × β)
Equations
@[inline]
def Std.DTreeMap.Internal.Impl.Const.getEntryLE? {α : Type u} {β : Type v} [Ord α] (k : α) :
(Impl α fun (x : α) => β)Option (α × β)

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.Const.getEntryLE?.go {α : Type u} {β : Type v} [Ord α] (k : α) (best : Option (α × β)) :
(Impl α fun (x : α) => β)Option (α × β)
Equations
@[inline]
def Std.DTreeMap.Internal.Impl.Const.getEntryLT? {α : Type u} {β : Type v} [Ord α] (k : α) :
(Impl α fun (x : α) => β)Option (α × β)

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.Const.getEntryLT?.go {α : Type u} {β : Type v} [Ord α] (k : α) (best : Option (α × β)) :
(Impl α fun (x : α) => β)Option (α × β)
Equations
@[inline]
def Std.DTreeMap.Internal.Impl.Const.getEntryGE! {α : Type u} {β : Type v} [Ord α] [Inhabited (α × β)] (k : α) (t : Impl α fun (x : α) => β) :
α × β

Implementation detail of the tree map

Equations
@[inline]
def Std.DTreeMap.Internal.Impl.Const.getEntryGT! {α : Type u} {β : Type v} [Ord α] [Inhabited (α × β)] (k : α) (t : Impl α fun (x : α) => β) :
α × β

Implementation detail of the tree map

Equations
@[inline]
def Std.DTreeMap.Internal.Impl.Const.getEntryLE! {α : Type u} {β : Type v} [Ord α] [Inhabited (α × β)] (k : α) (t : Impl α fun (x : α) => β) :
α × β

Implementation detail of the tree map

Equations
@[inline]
def Std.DTreeMap.Internal.Impl.Const.getEntryLT! {α : Type u} {β : Type v} [Ord α] [Inhabited (α × β)] (k : α) (t : Impl α fun (x : α) => β) :
α × β

Implementation detail of the tree map

Equations
@[inline]
def Std.DTreeMap.Internal.Impl.Const.getEntryGED {α : Type u} {β : Type v} [Ord α] (k : α) (t : Impl α fun (x : α) => β) (fallback : α × β) :
α × β

Implementation detail of the tree map

Equations
@[inline]
def Std.DTreeMap.Internal.Impl.Const.getEntryGTD {α : Type u} {β : Type v} [Ord α] (k : α) (t : Impl α fun (x : α) => β) (fallback : α × β) :
α × β

Implementation detail of the tree map

Equations
@[inline]
def Std.DTreeMap.Internal.Impl.Const.getEntryLED {α : Type u} {β : Type v} [Ord α] (k : α) (t : Impl α fun (x : α) => β) (fallback : α × β) :
α × β

Implementation detail of the tree map

Equations
@[inline]
def Std.DTreeMap.Internal.Impl.Const.getEntryLTD {α : Type u} {β : Type v} [Ord α] (k : α) (t : Impl α fun (x : α) => β) (fallback : α × β) :
α × β

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.Const.getEntryGE {α : Type u} {β : Type v} [Ord α] [TransOrd α] (k : α) (t : Impl α fun (x : α) => β) (ho : t.Ordered) (he : (a : α), a t (compare a k).isGE = true) :
α × β

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.Const.getEntryGT {α : Type u} {β : Type v} [Ord α] [TransOrd α] (k : α) (t : Impl α fun (x : α) => β) (ho : t.Ordered) (he : (a : α), a t compare a k = Ordering.gt) :
α × β

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.Const.getEntryLE {α : Type u} {β : Type v} [Ord α] [TransOrd α] (k : α) (t : Impl α fun (x : α) => β) (ho : t.Ordered) (he : (a : α), a t (compare a k).isLE = true) :
α × β

Implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Impl.Const.getEntryLT {α : Type u} {β : Type v} [Ord α] [TransOrd α] (k : α) (t : Impl α fun (x : α) => β) (ho : t.Ordered) (he : (a : α), a t compare a k = Ordering.lt) :
α × β

Implementation detail of the tree map

Equations