Documentation

Analysis.MeasureTheory.Section_1_3_1

Introduction to Measure Theory, Section 1.3.1: Integration of simple functions #

A companion to (the introduction to) Section 1.3.1 of the book "An introduction to Measure Theory".

def EReal.abs_fun {X : Type u_1} {Y : Type u_2} [RCLike Y] (f : XY) :
XEReal
Equations
Instances For
    def Complex.re_fun {X : Type u_1} (f : X) :
    X
    Equations
    Instances For
      def Complex.im_fun {X : Type u_1} (f : X) :
      X
      Equations
      Instances For
        def Complex.conj_fun {X : Type u_1} (f : X) :
        X
        Equations
        Instances For
          def EReal.pos_fun {X : Type u_1} (f : X) :
          XEReal
          Equations
          Instances For
            def EReal.neg_fun {X : Type u_1} (f : X) :
            XEReal
            Equations
            Instances For
              def Real.complex_fun {X : Type u_1} (f : X) :
              X
              Equations
              Instances For
                def Real.EReal_fun {X : Type u_1} (f : X) :
                XEReal
                Equations
                Instances For
                  noncomputable def EReal.indicator {X : Type u_1} (A : Set X) :
                  XEReal
                  Equations
                  Instances For
                    noncomputable def Complex.indicator {X : Type u_1} (A : Set X) :
                    X
                    Equations
                    Instances For

                      Definition 1.3.2

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        Equations
                        Instances For
                          Equations
                          Instances For
                            @[reducible, inline]
                            Equations
                            • =
                            Instances For
                              Equations
                              Instances For
                                theorem UnsignedSimpleFunction.integral_eq {d : } {f f✝ : EuclideanSpace' dEReal} (hf : UnsignedSimpleFunction f✝) {k : } {c : Fin kEReal} {E : Fin kSet (EuclideanSpace' d)} (hmes : ∀ (i : Fin k), LebesgueMeasurable (E i)) (hnonneg : ∀ (i : Fin k), c i 0) (heq : f✝ = i : Fin k, c i EReal.indicator (E i)) :
                                hf.integ = i : Fin (Exists.choose hf), .choose i * Lebesgue_measure (.choose i)

                                Lemma 1.3.4 (Well-definedness of simple integral)

                                def AlmostAlways {d : } (P : EuclideanSpace' dProp) :

                                Definition 1.3.5

                                Equations
                                Instances For
                                  def AlmostEverywhereEqual {d : } {X : Type u_1} (f g : EuclideanSpace' dX) :

                                  Definition 1.3.5

                                  Equations
                                  Instances For
                                    def Support {X : Type u_1} {Y : Type u_2} [Zero Y] (f : XY) :
                                    Set X

                                    Definition 1.3.5

                                    Equations
                                    Instances For
                                      theorem AlmostAlways.ofAlways {d : } {P : EuclideanSpace' dProp} (h : ∀ (x : EuclideanSpace' d), P x) :
                                      theorem AlmostAlways.mp {d : } {P Q : EuclideanSpace' dProp} (hP : AlmostAlways P) (himp : ∀ (x : EuclideanSpace' d), P xQ x) :
                                      theorem AlmostAlways.countable {d : } {I : Type u_1} [Countable I] {P : IEuclideanSpace' dProp} (hP : ∀ (i : I), AlmostAlways (P i)) :
                                      AlmostAlways fun (x : EuclideanSpace' d) => ∀ (i : I), P i x

                                      Exercise 1.3.1 (i) (Unsigned linearity)

                                      theorem UnsignedSimpleFunction.integral_smul {d : } {f : EuclideanSpace' dEReal} (hf : UnsignedSimpleFunction f) {c : EReal} (hc : c 0) :
                                      .integ = c * hf.integ

                                      Exercise 1.3.1 (i) (Unsigned linearity)

                                      Exercise 1.3.1 (ii) (Finiteness)

                                      Exercise 1.3.1 (iii) (Vanishing)

                                      Exercise 1.3.1 (iv) (Equivalence)

                                      Exercise 1.3.1 (v) (Monotonicity)

                                      Exercise 1.3.1(vi) (Compatibility with Lebesgue measure)

                                      Exercise 1.3.1(vi) (Compatibility with Lebesgue measure)

                                      Definition 1.3.6 (Absolutely convergent simple integral)

                                      Equations
                                      Instances For

                                        Definition 1.3.6 (Absolutely convergent simple integral)

                                        Equations
                                        Instances For
                                          Equations
                                          • =
                                          Instances For
                                            Equations
                                            • =
                                            Instances For
                                              noncomputable def RealSimpleFunction.integ {d : } {f : EuclideanSpace' d} (hf : RealSimpleFunction f) :
                                              Equations
                                              Instances For
                                                Equations
                                                • =
                                                Instances For
                                                  Equations
                                                  • =
                                                  Instances For
                                                    noncomputable def ComplexSimpleFunction.integ {d : } {f : EuclideanSpace' d} (hf : ComplexSimpleFunction f) :
                                                    Equations
                                                    Instances For
                                                      theorem RealSimpleFunction.integ_add {d : } {f g : EuclideanSpace' d} {hf : RealSimpleFunction f} {hg : RealSimpleFunction g} (hf_integ : hf.AbsolutelyIntegrable) (hg_integ : hg.AbsolutelyIntegrable) :
                                                      .integ = hf.integ + hg.integ

                                                      Exercise 1.3.2 (i) (*-linearity)

                                                      theorem RealSimpleFunction.integ_smul {d : } {f : EuclideanSpace' d} {hf : RealSimpleFunction f} (hf_integ : hf.AbsolutelyIntegrable) (a : ) :
                                                      .integ = a * hf.integ

                                                      Exercise 1.3.2 (i) (*-linearity)

                                                      theorem ComplexSimpleFunction.integ_smul {d : } {f : EuclideanSpace' d} {hf : ComplexSimpleFunction f} (hf_integ : hf.AbsolutelyIntegrable) (a : ) :
                                                      .integ = a * hf.integ

                                                      Exercise 1.3.2 (i) (*-linearity)

                                                      Exercise 1.3.2 (ii) (equivalence)

                                                      Exercise 1.3.2(iii) (Compatibility with Lebesgue measure)

                                                      Exercise 1.3.2(iii) (Compatibility with Lebesgue measure)