Documentation

Analysis.MeasureTheory.Section_1_3_1

Introduction to Measure Theory, Section 1.3.1: Integration of simple functions #

A companion to (the introduction to) Section 1.3.1 of the book "An introduction to Measure Theory".

def EReal.abs_fun {X : Type u_1} {Y : Type u_2} [RCLike Y] (f : XY) :
XEReal
Equations
Instances For
    def Complex.re_fun {X : Type u_1} (f : X) :
    X
    Equations
    Instances For
      def Complex.im_fun {X : Type u_1} (f : X) :
      X
      Equations
      Instances For
        def Complex.conj_fun {X : Type u_1} (f : X) :
        X
        Equations
        Instances For
          def EReal.pos_fun {X : Type u_1} (f : X) :
          XEReal
          Equations
          Instances For
            def EReal.neg_fun {X : Type u_1} (f : X) :
            XEReal
            Equations
            Instances For
              def Real.complex_fun {X : Type u_1} (f : X) :
              X
              Equations
              Instances For
                def Real.EReal_fun {X : Type u_1} (f : X) :
                XEReal
                Equations
                Instances For
                  noncomputable def EReal.indicator {X : Type u_1} (A : Set X) :
                  XEReal
                  Equations
                  Instances For
                    noncomputable def Complex.indicator {X : Type u_1} (A : Set X) :
                    X
                    Equations
                    Instances For

                      Definition 1.3.2

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        Equations
                        Instances For
                          Equations
                          Instances For
                            @[reducible, inline]
                            Equations
                            • =
                            Instances For
                              Equations
                              Instances For

                                Helper lemmas for Lemma 1.3.4 #

                                The proof uses a Venn diagram argument: given two representations of the same simple function, we partition R^d into atoms (intersections of all sets and their complements), express each original set as a disjoint union of atoms, and use finite additivity of Lebesgue measure.

                                Given families of sets indexed by Fin k and Fin k', an atom is determined by a choice of "in" or "out" for each set. We encode this as a Fin (2^(k+k')) index.

                                Equations
                                Instances For
                                  def UnsignedSimpleFunction.IntegralWellDef.atom {X : Type u_1} {k k' : } (E : Fin kSet X) (E' : Fin k'Set X) (n : Fin (2 ^ (k + k'))) :
                                  Set X

                                  The atom indexed by n is the intersection over all i of (E_i if bit i is 1, else E_i^c)

                                  Equations
                                  • One or more equations did not get rendered due to their size.
                                  Instances For
                                    theorem UnsignedSimpleFunction.IntegralWellDef.atom_pairwiseDisjoint {X : Type u_1} {k k' : } (E : Fin kSet X) (E' : Fin k'Set X) :

                                    Atoms are pairwise disjoint

                                    noncomputable def UnsignedSimpleFunction.IntegralWellDef.atomIndexOf {X : Type u_1} [DecidableEq X] {k k' : } (E : Fin kSet X) (E' : Fin k'Set X) (x : X) :

                                    Helper: construct atom index from membership pattern. The atom index encodes x's membership in each set as bits.

                                    Equations
                                    Instances For
                                      theorem UnsignedSimpleFunction.IntegralWellDef.atomIndexOf_lt {X : Type u_1} [DecidableEq X] {k k' : } (E : Fin kSet X) (E' : Fin k'Set X) (x : X) :
                                      atomIndexOf E E' x < 2 ^ (k + k')

                                      The atom index is bounded by 2^(k+k')

                                      theorem UnsignedSimpleFunction.IntegralWellDef.atomIndexOf_testBit_E {X : Type u_1} [DecidableEq X] {k k' : } (E : Fin kSet X) (E' : Fin k'Set X) (x : X) (j : Fin k) :
                                      (atomIndexOf E E' x).testBit j = true x E j

                                      The atom index has bit j set iff x ∈ E j

                                      theorem UnsignedSimpleFunction.IntegralWellDef.atomIndexOf_testBit_E' {X : Type u_1} [DecidableEq X] {k k' : } (E : Fin kSet X) (E' : Fin k'Set X) (x : X) (j : Fin k') :
                                      (atomIndexOf E E' x).testBit (k + j) = true x E' j

                                      The atom index has bit (k+j) set iff x ∈ E' j

                                      theorem UnsignedSimpleFunction.IntegralWellDef.set_eq_biUnion_atoms {X : Type u_1} {k k' : } (E : Fin kSet X) (E' : Fin k'Set X) (i : Fin k) :
                                      E i = n{n : Fin (2 ^ (k + k')) | atomMembership k k' n i = true}, atom E E' n

                                      Original set E_i is the union of atoms where bit i is 1

                                      theorem UnsignedSimpleFunction.IntegralWellDef.set_eq_biUnion_atoms' {X : Type u_1} {k k' : } (E : Fin kSet X) (E' : Fin k'Set X) (i : Fin k') :
                                      E' i = n{n : Fin (2 ^ (k + k')) | atomMembership k k' (↑n) (k + i) = true}, atom E E' n

                                      Original set E'_i is the union of atoms where bit (k+i) is 1

                                      theorem UnsignedSimpleFunction.IntegralWellDef.atom_measurable {d k k' : } {E : Fin kSet (EuclideanSpace' d)} {E' : Fin k'Set (EuclideanSpace' d)} (hE : ∀ (i : Fin k), LebesgueMeasurable (E i)) (hE' : ∀ (i : Fin k'), LebesgueMeasurable (E' i)) (n : Fin (2 ^ (k + k'))) :

                                      Atoms are measurable if the original sets are

                                      Indicator function evaluates to c if x ∈ E

                                      Indicator function evaluates to 0 if x ∉ E

                                      The weighted measure sum for a representation

                                      Equations
                                      Instances For
                                        theorem UnsignedSimpleFunction.IntegralWellDef.weightedMeasureSum_eq_of_eq {d k k' : } {c : Fin kEReal} {E : Fin kSet (EuclideanSpace' d)} {c' : Fin k'EReal} {E' : Fin k'Set (EuclideanSpace' d)} (hmes : ∀ (i : Fin k), LebesgueMeasurable (E i)) (hmes' : ∀ (i : Fin k'), LebesgueMeasurable (E' i)) (hnonneg : ∀ (i : Fin k), c i 0) (hnonneg' : ∀ (i : Fin k'), c' i 0) (heq : i : Fin k, c i EReal.indicator (E i) = i : Fin k', c' i EReal.indicator (E' i)) :

                                        Core lemma: Two representations of the same function give the same weighted measure sum. This is the heart of Lemma 1.3.4 (Venn diagram argument).

                                        Single-family atoms (k' = 0 specialization) #

                                        When working with a single family of sets (no second family to compare against), we specialize the atom machinery with k' = 0.

                                        def UnsignedSimpleFunction.IntegralWellDef.singleAtom {X : Type u_1} {k : } (E : Fin kSet X) (n : Fin (2 ^ k)) :
                                        Set X

                                        The atom for a single family of sets, using k' = 0 in the general atom definition

                                        Equations
                                        Instances For

                                          Single atoms are pairwise disjoint

                                          theorem UnsignedSimpleFunction.IntegralWellDef.mem_singleAtom_iff {X : Type u_1} {k : } (E : Fin kSet X) (n : Fin (2 ^ k)) (x : X) :
                                          x singleAtom E n ∀ (i : Fin k), (↑n).testBit i = true x E i

                                          Membership in singleAtom is determined by bit pattern

                                          theorem UnsignedSimpleFunction.IntegralWellDef.exists_unique_singleAtom {X : Type u_1} [DecidableEq X] {k : } (E : Fin kSet X) (x : X) :
                                          ∃! n : Fin (2 ^ k), x singleAtom E n

                                          Every point is in exactly one singleAtom

                                          noncomputable def UnsignedSimpleFunction.IntegralWellDef.atomValue {k : } (c : Fin k) (n : Fin (2 ^ k)) :

                                          The value on atom n is the sum of coefficients for sets containing that atom

                                          Equations
                                          Instances For
                                            theorem UnsignedSimpleFunction.integral_eq {d : } {f : EuclideanSpace' dEReal} (hf : UnsignedSimpleFunction f) {k : } {c : Fin kEReal} {E : Fin kSet (EuclideanSpace' d)} (hmes : ∀ (i : Fin k), LebesgueMeasurable (E i)) (hnonneg : ∀ (i : Fin k), c i 0) (heq : f = i : Fin k, c i EReal.indicator (E i)) :
                                            hf.integ = i : Fin k, c i * Lebesgue_measure (E i)

                                            Lemma 1.3.4 (Well-definedness of simple integral)

                                            def AlmostAlways {d : } (P : EuclideanSpace' dProp) :

                                            Definition 1.3.5

                                            Equations
                                            Instances For
                                              def AlmostEverywhereEqual {d : } {X : Type u_1} (f g : EuclideanSpace' dX) :

                                              Definition 1.3.5

                                              Equations
                                              Instances For
                                                def Support {X : Type u_1} {Y : Type u_2} [Zero Y] (f : XY) :
                                                Set X

                                                Definition 1.3.5

                                                Equations
                                                Instances For
                                                  theorem AlmostAlways.ofAlways {d : } {P : EuclideanSpace' dProp} (h : ∀ (x : EuclideanSpace' d), P x) :
                                                  theorem AlmostAlways.mp {d : } {P Q : EuclideanSpace' dProp} (hP : AlmostAlways P) (himp : ∀ (x : EuclideanSpace' d), P xQ x) :
                                                  theorem AlmostAlways.countable {d : } {I : Type u_1} [Countable I] {P : IEuclideanSpace' dProp} (hP : ∀ (i : I), AlmostAlways (P i)) :
                                                  AlmostAlways fun (x : EuclideanSpace' d) => ∀ (i : I), P i x
                                                  theorem AlmostEverywhereEqual.refl {d : } {X : Type u_1} (f : EuclideanSpace' dX) :

                                                  Almost everywhere equality is reflexive

                                                  theorem AlmostEverywhereEqual.symm {d : } {X : Type u_1} {f g : EuclideanSpace' dX} (h : AlmostEverywhereEqual f g) :

                                                  Almost everywhere equality is symmetric

                                                  theorem AlmostEverywhereEqual.trans {d : } {X : Type u_1} {f g h : EuclideanSpace' dX} (hfg : AlmostEverywhereEqual f g) (hgh : AlmostEverywhereEqual g h) :

                                                  Almost everywhere equality is transitive

                                                  Almost everywhere equality is an equivalence relation

                                                  Exercise 1.3.1 (i) (Unsigned linearity)

                                                  theorem UnsignedSimpleFunction.integral_smul {d : } {f : EuclideanSpace' dEReal} (hf : UnsignedSimpleFunction f) {c : EReal} (hc : c 0) :
                                                  .integ = c * hf.integ

                                                  Exercise 1.3.1 (i) (Unsigned linearity)

                                                  Exercise 1.3.1 (ii) (Finiteness)

                                                  Exercise 1.3.1 (iii) (Vanishing)

                                                  Exercise 1.3.1 (iv) (Equivalence)

                                                  Exercise 1.3.1 (v) (Monotonicity)

                                                  Exercise 1.3.1(vi) (Compatibility with Lebesgue measure)

                                                  Exercise 1.3.1(vi) (Compatibility with Lebesgue measure)

                                                  Definition 1.3.6 (Absolutely convergent simple integral)

                                                  Equations
                                                  Instances For

                                                    Definition 1.3.6 (Absolutely convergent simple integral)

                                                    Equations
                                                    Instances For

                                                      Disjoint representation for RealSimpleFunction #

                                                      Measure-theory specific lemmas for the disjoint representation of simple functions.

                                                      On a point in singleAtom n, the original sum equals atomValue n

                                                      The original function equals the sum over atoms with atomValue coefficients

                                                      theorem RealSimpleFunction.disjoint_representation {d : } {f : EuclideanSpace' d} (hf : RealSimpleFunction f) :
                                                      ∃ (n : ) (v : Fin n) (A : Fin nSet (EuclideanSpace' d)), (∀ (i : Fin n), LebesgueMeasurable (A i)) Set.univ.PairwiseDisjoint A f = i : Fin n, v i (A i).indicator'

                                                      Disjoint representation: any RealSimpleFunction has an equivalent representation with pairwise disjoint, measurable sets.

                                                      Equations
                                                      • =
                                                      Instances For
                                                        Equations
                                                        • =
                                                        Instances For
                                                          noncomputable def RealSimpleFunction.integ {d : } {f : EuclideanSpace' d} (hf : RealSimpleFunction f) :
                                                          Equations
                                                          Instances For
                                                            Equations
                                                            • =
                                                            Instances For
                                                              Equations
                                                              • =
                                                              Instances For
                                                                noncomputable def ComplexSimpleFunction.integ {d : } {f : EuclideanSpace' d} (hf : ComplexSimpleFunction f) :
                                                                Equations
                                                                Instances For
                                                                  theorem RealSimpleFunction.integ_add {d : } {f g : EuclideanSpace' d} {hf : RealSimpleFunction f} {hg : RealSimpleFunction g} (hf_integ : hf.AbsolutelyIntegrable) (hg_integ : hg.AbsolutelyIntegrable) :
                                                                  .integ = hf.integ + hg.integ

                                                                  Exercise 1.3.2 (i) (*-linearity)

                                                                  theorem RealSimpleFunction.integ_smul {d : } {f : EuclideanSpace' d} {hf : RealSimpleFunction f} (hf_integ : hf.AbsolutelyIntegrable) (a : ) :
                                                                  .integ = a * hf.integ

                                                                  Exercise 1.3.2 (i) (*-linearity)

                                                                  theorem ComplexSimpleFunction.integ_smul {d : } {f : EuclideanSpace' d} {hf : ComplexSimpleFunction f} (hf_integ : hf.AbsolutelyIntegrable) (a : ) :
                                                                  .integ = a * hf.integ

                                                                  Exercise 1.3.2 (i) (*-linearity)

                                                                  Exercise 1.3.2 (ii) (equivalence)

                                                                  Exercise 1.3.2(iii) (Compatibility with Lebesgue measure)

                                                                  Exercise 1.3.2(iii) (Compatibility with Lebesgue measure)