Documentation

Init.Data.Array.OfFn

Theorems about Array.ofFn #

@[simp]
theorem Array.ofFn_zero {α : Type u_1} {f : Fin 0α} :
theorem Array.ofFn_succ {n : Nat} {α : Type u_1} {f : Fin (n + 1)α} :
ofFn f = (ofFn fun (i : Fin n) => f i.castSucc).push (f n, )
@[simp]
theorem List.toArray_ofFn {n : Nat} {α : Type u_1} {f : Fin nα} :
@[simp]
theorem Array.toList_ofFn {n : Nat} {α : Type u_1} {f : Fin nα} :
@[simp]
theorem Array.ofFn_eq_empty_iff {n : Nat} {α : Type u_1} {f : Fin nα} :
ofFn f = #[] n = 0
@[simp]
theorem Array.mem_ofFn {α : Type u_1} {n : Nat} {f : Fin nα} {a : α} :
a ofFn f (i : Fin n), f i = a