Documentation

Init.Data.Array.Lemmas

Theorems about Array. #

Preliminaries #

toList #

@[simp]
theorem Array.toList_inj {α : Type u_1} {xs ys : Array α} :
xs.toList = ys.toList xs = ys
@[simp]
theorem Array.toList_eq_nil_iff {α : Type u_1} {xs : Array α} :
xs.toList = [] xs = #[]
@[simp]
theorem Array.mem_toList_iff {α : Type u_1} {a : α} {xs : Array α} :
a xs.toList a xs
@[simp]
theorem Array.length_toList {α : Type u_1} {xs : Array α} :
theorem Array.eq_toArray {α✝ : Type u_1} {xs : Array α✝} {as : List α✝} :
xs = as.toArray xs.toList = as
theorem Array.toArray_eq {α✝ : Type u_1} {as : List α✝} {xs : Array α✝} :
as.toArray = xs as = xs.toList

empty #

@[simp]
theorem Array.empty_eq {α : Type u_1} {xs : Array α} :
#[] = xs xs = #[]
theorem Array.size_empty {α : Type u_1} :
@[simp]
@[deprecated Array.emptyWithCapacity_eq (since := "2025-03-12")]
theorem Array.mkEmpty_eq {α : Type u_1} {n : Nat} :

size #

theorem Array.eq_empty_of_size_eq_zero {α✝ : Type u_1} {xs : Array α✝} (h : xs.size = 0) :
xs = #[]
theorem Array.ne_empty_of_size_eq_add_one {n : Nat} {α✝ : Type u_1} {xs : Array α✝} (h : xs.size = n + 1) :
xs #[]
theorem Array.ne_empty_of_size_pos {α✝ : Type u_1} {xs : Array α✝} (h : 0 < xs.size) :
xs #[]
theorem Array.size_eq_zero_iff {α✝ : Type u_1} {xs : Array α✝} :
xs.size = 0 xs = #[]
@[reducible, inline, deprecated Array.size_eq_zero_iff (since := "2025-02-24")]
abbrev Array.size_eq_zero {α✝ : Type u_1} {xs : Array α✝} :
xs.size = 0 xs = #[]
Equations
theorem Array.eq_empty_iff_size_eq_zero {α✝ : Type u_1} {xs : Array α✝} :
xs = #[] xs.size = 0
theorem Array.size_pos_of_mem {α : Type u_1} {a : α} {xs : Array α} (h : a xs) :
0 < xs.size
theorem Array.exists_mem_of_size_pos {α : Type u_1} {xs : Array α} (h : 0 < xs.size) :
(a : α), a xs
theorem Array.size_pos_iff_exists_mem {α : Type u_1} {xs : Array α} :
0 < xs.size (a : α), a xs
theorem Array.exists_mem_of_size_eq_add_one {α : Type u_1} {n : Nat} {xs : Array α} (h : xs.size = n + 1) :
(a : α), a xs
theorem Array.size_pos_iff {α : Type u_1} {xs : Array α} :
0 < xs.size xs #[]
@[reducible, inline, deprecated Array.size_pos_iff (since := "2025-02-24")]
abbrev Array.size_pos {α : Type u_1} {xs : Array α} :
0 < xs.size xs #[]
Equations
theorem Array.size_eq_one_iff {α : Type u_1} {xs : Array α} :
xs.size = 1 (a : α), xs = #[a]
@[reducible, inline, deprecated Array.size_eq_one_iff (since := "2025-02-24")]
abbrev Array.size_eq_one {α : Type u_1} {xs : Array α} :
xs.size = 1 (a : α), xs = #[a]
Equations

L[i] and L[i]? #

@[simp]
theorem Array.getElem?_eq_none_iff {α : Type u_1} {i : Nat} {xs : Array α} :
xs[i]? = none xs.size i
@[simp]
theorem Array.none_eq_getElem?_iff {α : Type u_1} {xs : Array α} {i : Nat} :
none = xs[i]? xs.size i
theorem Array.getElem?_eq_none {α : Type u_1} {i : Nat} {xs : Array α} (h : xs.size i) :
@[simp]
theorem Array.getElem?_eq_getElem {α : Type u_1} {xs : Array α} {i : Nat} (h : i < xs.size) :
xs[i]? = some xs[i]
theorem Array.getElem?_eq_some_iff {α : Type u_1} {i : Nat} {b : α} {xs : Array α} :
xs[i]? = some b (h : i < xs.size), xs[i] = b
theorem Array.some_eq_getElem?_iff {α : Type u_1} {b : α} {i : Nat} {xs : Array α} :
some b = xs[i]? (h : i < xs.size), xs[i] = b
@[simp]
theorem Array.some_getElem_eq_getElem?_iff {α : Type u_1} (xs : Array α) (i : Nat) (h : i < xs.size) :
@[simp]
theorem Array.getElem?_eq_some_getElem_iff {α : Type u_1} (xs : Array α) (i : Nat) (h : i < xs.size) :
theorem Array.getElem_eq_iff {α : Type u_1} {x : α} {xs : Array α} {i : Nat} {h : i < xs.size} :
xs[i] = x xs[i]? = some x
theorem Array.getElem_eq_getElem?_get {α : Type u_1} {xs : Array α} {i : Nat} (h : i < xs.size) :
xs[i] = xs[i]?.get
theorem Array.getD_getElem? {α : Type u_1} {xs : Array α} {i : Nat} {d : α} :
xs[i]?.getD d = if p : i < xs.size then xs[i] else d
@[simp]
theorem Array.getElem?_empty {α : Type u_1} {i : Nat} :
theorem Array.getElem_push_lt {α : Type u_1} {xs : Array α} {x : α} {i : Nat} (h : i < xs.size) :
let_fun this := ; (xs.push x)[i] = xs[i]
@[simp]
theorem Array.getElem_push_eq {α : Type u_1} {xs : Array α} {x : α} :
(xs.push x)[xs.size] = x
theorem Array.getElem_push {α : Type u_1} {xs : Array α} {x : α} {i : Nat} (h : i < (xs.push x).size) :
(xs.push x)[i] = if h : i < xs.size then xs[i] else x
theorem Array.getElem?_push {α : Type u_1} {i : Nat} {xs : Array α} {x : α} :
(xs.push x)[i]? = if i = xs.size then some x else xs[i]?
@[simp]
theorem Array.getElem?_push_size {α : Type u_1} {xs : Array α} {x : α} :
(xs.push x)[xs.size]? = some x
@[simp]
theorem Array.getElem_singleton {α : Type u_1} {a : α} {i : Nat} (h : i < 1) :
#[a][i] = a
theorem Array.getElem?_singleton {α : Type u_1} {a : α} {i : Nat} :
theorem Array.ext_getElem? {α : Type u_1} {xs ys : Array α} (h : ∀ (i : Nat), xs[i]? = ys[i]?) :
xs = ys

pop #

@[simp]
theorem Array.pop_empty {α : Type u_1} :
@[simp]
theorem Array.pop_push {α : Type u_1} {xs : Array α} {x : α} :
(xs.push x).pop = xs
@[simp]
theorem Array.getElem_pop {α : Type u_1} {xs : Array α} {i : Nat} (h : i < xs.pop.size) :
xs.pop[i] = xs[i]
theorem Array.getElem?_pop {α : Type u_1} {xs : Array α} {i : Nat} :
xs.pop[i]? = if i < xs.size - 1 then xs[i]? else none
theorem Array.back_pop {α : Type u_1} {xs : Array α} (h : 0 < xs.pop.size) :
xs.pop.back h = xs[xs.size - 2]
theorem Array.back?_pop {α : Type u_1} {xs : Array α} :
@[simp]
theorem Array.pop_append_of_ne_empty {α : Type u_1} {xs ys : Array α} (h : ys #[]) :
(xs ++ ys).pop = xs ++ ys.pop

push #

@[simp]
theorem Array.push_ne_empty {α : Type u_1} {a : α} {xs : Array α} :
xs.push a #[]
@[simp]
theorem Array.push_ne_self {α : Type u_1} {a : α} {xs : Array α} :
xs.push a xs
@[simp]
theorem Array.ne_push_self {α : Type u_1} {a : α} {xs : Array α} :
xs xs.push a
theorem Array.back_eq_of_push_eq {α : Type u_1} {a b : α} {xs ys : Array α} (h : xs.push a = ys.push b) :
a = b
theorem Array.pop_eq_of_push_eq {α : Type u_1} {a b : α} {xs ys : Array α} (h : xs.push a = ys.push b) :
xs = ys
theorem Array.push_inj_left {α : Type u_1} {a : α} {xs ys : Array α} :
xs.push a = ys.push a xs = ys
theorem Array.push_inj_right {α : Type u_1} {a b : α} {xs : Array α} :
xs.push a = xs.push b a = b
theorem Array.push_eq_push {α : Type u_1} {a b : α} {xs ys : Array α} :
xs.push a = ys.push b a = b xs = ys
theorem Array.push_eq_append_singleton {α : Type u_1} {as : Array α} {x : α} :
as.push x = as ++ #[x]
theorem Array.exists_push_of_ne_empty {α : Type u_1} {xs : Array α} (h : xs #[]) :
(ys : Array α), (a : α), xs = ys.push a
theorem Array.ne_empty_iff_exists_push {α : Type u_1} {xs : Array α} :
xs #[] (ys : Array α), (a : α), xs = ys.push a
theorem Array.exists_push_of_size_pos {α : Type u_1} {xs : Array α} (h : 0 < xs.size) :
(ys : Array α), (a : α), xs = ys.push a
theorem Array.size_pos_iff_exists_push {α : Type u_1} {xs : Array α} :
0 < xs.size (ys : Array α), (a : α), xs = ys.push a
theorem Array.exists_push_of_size_eq_add_one {α : Type u_1} {n : Nat} {xs : Array α} (h : xs.size = n + 1) :
(ys : Array α), (a : α), xs = ys.push a
theorem Array.eq_push_pop_back!_of_size_ne_zero {α : Type u_1} [Inhabited α] {xs : Array α} (h : xs.size 0) :
xs = xs.pop.push xs.back!
theorem Array.eq_push_of_size_ne_zero {α : Type u_1} {xs : Array α} (h : xs.size 0) :
(bs : Array α), (c : α), xs = bs.push c
theorem Array.singleton_inj {α✝ : Type u_1} {a b : α✝} :
#[a] = #[b] a = b

replicate #

@[simp]
theorem Array.size_replicate {α : Type u_1} {n : Nat} {v : α} :
(replicate n v).size = n
@[reducible, inline, deprecated Array.size_replicate (since := "2025-03-18")]
abbrev Array.size_mkArray {α : Type u_1} {n : Nat} {v : α} :
(replicate n v).size = n
Equations
@[simp]
theorem Array.toList_replicate {n : Nat} {α✝ : Type u_1} {a : α✝} :
@[reducible, inline, deprecated Array.toList_replicate (since := "2025-03-18")]
abbrev Array.toList_mkArray {n : Nat} {α✝ : Type u_1} {a : α✝} :
Equations
@[simp]
theorem Array.replicate_zero {α✝ : Type u_1} {a : α✝} :
@[reducible, inline, deprecated Array.replicate_zero (since := "2025-03-18")]
abbrev Array.mkArray_zero {α✝ : Type u_1} {a : α✝} :
Equations
theorem Array.replicate_succ {n : Nat} {α✝ : Type u_1} {a : α✝} :
replicate (n + 1) a = (replicate n a).push a
@[reducible, inline, deprecated Array.replicate_succ (since := "2025-03-18")]
abbrev Array.mkArray_succ {n : Nat} {α✝ : Type u_1} {a : α✝} :
replicate (n + 1) a = (replicate n a).push a
Equations
@[simp]
theorem Array.getElem_replicate {α : Type u_1} {n : Nat} {v : α} {i : Nat} (h : i < (replicate n v).size) :
(replicate n v)[i] = v
@[reducible, inline, deprecated Array.getElem_replicate (since := "2025-03-18")]
abbrev Array.getElem_mkArray {α : Type u_1} {n : Nat} {v : α} {i : Nat} (h : i < (replicate n v).size) :
(replicate n v)[i] = v
Equations
@[simp]
theorem Array.getElem?_replicate {α : Type u_1} {n : Nat} {v : α} {i : Nat} :
@[reducible, inline, deprecated Array.getElem?_replicate (since := "2025-03-18")]
abbrev Array.getElem?_mkArray {α : Type u_1} {n : Nat} {v : α} {i : Nat} :
Equations

mem #

theorem Array.not_mem_empty {α : Type u_1} (a : α) :
@[simp]
theorem Array.mem_push {α : Type u_1} {xs : Array α} {x y : α} :
x xs.push y x xs x = y
theorem Array.mem_push_self {α : Type u_1} {xs : Array α} {x : α} :
x xs.push x
theorem Array.eq_push_append_of_mem {α : Type u_1} {xs : Array α} {x : α} (h : x xs) :
(as : Array α), (bs : Array α), xs = as.push x ++ bs ¬x as
theorem Array.mem_push_of_mem {α : Type u_1} {xs : Array α} {x : α} (y : α) (h : x xs) :
x xs.push y
theorem Array.exists_mem_of_ne_empty {α : Type u_1} (xs : Array α) (h : xs #[]) :
(x : α), x xs
theorem Array.eq_empty_iff_forall_not_mem {α : Type u_1} {xs : Array α} :
xs = #[] ∀ (a : α), ¬a xs
@[simp]
theorem Array.mem_dite_empty_left {α : Type u_1} {p : Prop} {x : α} [Decidable p] {xs : ¬pArray α} :
(x if h : p then #[] else xs h) (h : ¬p), x xs h
@[simp]
theorem Array.mem_dite_empty_right {α : Type u_1} {p : Prop} {x : α} [Decidable p] {xs : pArray α} :
(x if h : p then xs h else #[]) (h : p), x xs h
@[simp]
theorem Array.mem_ite_empty_left {α : Type u_1} {p : Prop} {x : α} [Decidable p] {xs : Array α} :
(x if p then #[] else xs) ¬p x xs
@[simp]
theorem Array.mem_ite_empty_right {α : Type u_1} {p : Prop} {x : α} [Decidable p] {xs : Array α} :
(x if p then xs else #[]) p x xs
theorem Array.eq_of_mem_singleton {α✝ : Type u_1} {b a : α✝} (h : a #[b]) :
a = b
@[simp]
theorem Array.mem_singleton {α : Type u_1} {a b : α} :
a #[b] a = b
theorem Array.forall_mem_push {α : Type u_1} {p : αProp} {xs : Array α} {a : α} :
(∀ (x : α), x xs.push ap x) p a ∀ (x : α), x xsp x
theorem Array.forall_mem_ne {α : Type u_1} {a : α} {xs : Array α} :
(∀ (a' : α), a' xs¬a = a') ¬a xs
theorem Array.forall_mem_ne' {α : Type u_1} {a : α} {xs : Array α} :
(∀ (a' : α), a' xs¬a' = a) ¬a xs
theorem Array.exists_mem_empty {α : Type u_1} (p : αProp) :
¬ (x : α), (x_1 : x #[]), p x
theorem Array.forall_mem_empty {α : Type u_1} (p : αProp) (x : α) :
x #[]p x
theorem Array.exists_mem_push {α : Type u_1} {p : αProp} {a : α} {xs : Array α} :
( (x : α), (x_1 : x xs.push a), p x) p a (x : α), (x_1 : x xs), p x
theorem Array.forall_mem_singleton {α : Type u_1} {p : αProp} {a : α} :
(∀ (x : α), x #[a]p x) p a
theorem Array.mem_empty_iff {α : Type u_1} (a : α) :
theorem Array.mem_singleton_self {α : Type u_1} (a : α) :
a #[a]
theorem Array.mem_of_mem_push_of_mem {α : Type u_1} {a b : α} {xs : Array α} :
a xs.push bb xsa xs
theorem Array.eq_or_ne_mem_of_mem {α : Type u_1} {a b : α} {xs : Array α} (h' : a xs.push b) :
a = b a b a xs
theorem Array.ne_empty_of_mem {α : Type u_1} {a : α} {xs : Array α} (h : a xs) :
xs #[]
theorem Array.mem_of_ne_of_mem {α : Type u_1} {a y : α} {xs : Array α} (h₁ : a y) (h₂ : a xs.push y) :
a xs
theorem Array.ne_of_not_mem_push {α : Type u_1} {a b : α} {xs : Array α} (h : ¬a xs.push b) :
a b
theorem Array.not_mem_of_not_mem_push {α : Type u_1} {a b : α} {xs : Array α} (h : ¬a xs.push b) :
¬a xs
theorem Array.not_mem_push_of_ne_of_not_mem {α : Type u_1} {a y : α} {xs : Array α} :
a y¬a xs¬a xs.push y
theorem Array.ne_and_not_mem_of_not_mem_push {α : Type u_1} {a y : α} {xs : Array α} :
¬a xs.push ya y ¬a xs
theorem Array.getElem_of_mem {α : Type u_1} {a : α} {xs : Array α} (h : a xs) :
(i : Nat), (h : i < xs.size), xs[i] = a
theorem Array.getElem?_of_mem {α : Type u_1} {a : α} {xs : Array α} (h : a xs) :
(i : Nat), xs[i]? = some a
theorem Array.mem_of_getElem {α : Type u_1} {xs : Array α} {i : Nat} {h : i < xs.size} {a : α} (e : xs[i] = a) :
a xs
theorem Array.mem_of_getElem? {α : Type u_1} {xs : Array α} {i : Nat} {a : α} (e : xs[i]? = some a) :
a xs
theorem Array.mem_iff_getElem {α : Type u_1} {a : α} {xs : Array α} :
a xs (i : Nat), (h : i < xs.size), xs[i] = a
theorem Array.mem_iff_getElem? {α : Type u_1} {a : α} {xs : Array α} :
a xs (i : Nat), xs[i]? = some a
theorem Array.forall_getElem {α : Type u_1} {xs : Array α} {p : αProp} :
(∀ (i : Nat) (h : i < xs.size), p xs[i]) ∀ (a : α), a xsp a

isEmpty #

@[simp]
theorem Array.isEmpty_toList {α : Type u_1} {xs : Array α} :
theorem Array.isEmpty_eq_false_iff_exists_mem {α : Type u_1} {xs : Array α} :
xs.isEmpty = false (x : α), x xs
@[simp]
theorem Array.isEmpty_iff {α : Type u_1} {xs : Array α} :
@[reducible, inline, deprecated Array.isEmpty_iff (since := "2025-02-17")]
abbrev Array.isEmpty_eq_true {α : Type u_1} {xs : Array α} :
Equations
@[simp]
theorem Array.isEmpty_eq_false_iff {α : Type u_1} {xs : Array α} :
@[reducible, inline, deprecated Array.isEmpty_eq_false_iff (since := "2025-02-17")]
abbrev Array.isEmpty_eq_false {α : Type u_1} {xs : Array α} :
Equations
theorem Array.isEmpty_iff_size_eq_zero {α : Type u_1} {xs : Array α} :

Decidability of bounded quantifiers #

instance Array.instDecidableForallForallMemOfDecidablePred {α : Type u_1} {xs : Array α} {p : αProp} [DecidablePred p] :
Decidable (∀ (x : α), x xsp x)
Equations

any / all #

theorem Array.anyM_eq_anyM_loop {m : TypeType u_1} {α : Type u_2} [Monad m] {p : αm Bool} {as : Array α} {start stop : Nat} :
anyM p as start stop = anyM.loop p as (min stop as.size) start
theorem Array.anyM_stop_le_start {m : TypeType u_1} {α : Type u_2} [Monad m] {p : αm Bool} {as : Array α} {start stop : Nat} (h : min stop as.size start) :
anyM p as start stop = pure false
@[irreducible]
theorem Array.anyM_loop_cons {m : TypeType u_1} {α : Type u_2} [Monad m] {p : αm Bool} {a : α} {as : List α} {stop start : Nat} (h : stop + 1 (a :: as).length) :
anyM.loop p { toList := a :: as } (stop + 1) h (start + 1) = anyM.loop p { toList := as } stop start
@[simp, irreducible]
theorem Array.anyM_toList {m : TypeType u_1} {α : Type u_2} [Monad m] {p : αm Bool} {as : Array α} :
@[irreducible]
theorem Array.anyM_loop_iff_exists {α : Type u_1} {p : αBool} {as : Array α} {start stop : Nat} (h : stop as.size) :
anyM.loop p as stop h start = true (i : Nat), (x : i < as.size), start i i < stop p as[i] = true
theorem Array.any_iff_exists {α : Type u_1} {p : αBool} {as : Array α} {start stop : Nat} :
as.any p start stop = true (i : Nat), (x : i < as.size), start i i < stop p as[i] = true
@[simp]
theorem Array.any_eq_true {α : Type u_1} {p : αBool} {as : Array α} :
as.any p = true (i : Nat), (x : i < as.size), p as[i] = true
@[simp]
theorem Array.any_eq_false {α : Type u_1} {p : αBool} {as : Array α} :
as.any p = false ∀ (i : Nat) (x : i < as.size), ¬p as[i] = true
@[simp]
theorem Array.any_toList {α : Type u_1} {p : αBool} {as : Array α} :
as.toList.any p = as.any p
theorem Array.allM_eq_not_anyM_not {m : TypeType u_1} {α : Type u_2} [Monad m] [LawfulMonad m] {p : αm Bool} {as : Array α} :
allM p as = (fun (x : Bool) => !x) <$> anyM (fun (x : α) => (fun (x : Bool) => !x) <$> p x) as
@[simp]
theorem Array.allM_toList {m : TypeType u_1} {α : Type u_2} [Monad m] [LawfulMonad m] {p : αm Bool} {as : Array α} :
theorem Array.all_eq_not_any_not {α : Type u_1} {p : αBool} {as : Array α} {start stop : Nat} :
as.all p start stop = !as.any (fun (x : α) => !p x) start stop
theorem Array.all_iff_forall {α : Type u_1} {p : αBool} {as : Array α} {start stop : Nat} :
as.all p start stop = true ∀ (i : Nat) (x : i < as.size), start i i < stopp as[i] = true
@[simp]
theorem Array.all_eq_true {α : Type u_1} {p : αBool} {as : Array α} :
as.all p = true ∀ (i : Nat) (x : i < as.size), p as[i] = true
@[simp]
theorem Array.all_eq_false {α : Type u_1} {p : αBool} {as : Array α} :
as.all p = false (i : Nat), (x : i < as.size), ¬p as[i] = true
@[simp]
theorem Array.all_toList {α : Type u_1} {p : αBool} {as : Array α} :
as.toList.all p = as.all p
theorem Array.all_eq_true_iff_forall_mem {α : Type u_1} {p : αBool} {xs : Array α} :
xs.all p = true ∀ (x : α), x xsp x = true
@[simp]
theorem List.anyM_toArray' {m : TypeType u_1} {α : Type u_2} [Monad m] [LawfulMonad m] {p : αm Bool} {l : List α} {stop : Nat} (h : stop = l.toArray.size) :
Array.anyM p l.toArray 0 stop = anyM p l

Variant of anyM_toArray with a side condition on stop.

@[simp]
theorem List.any_toArray' {α : Type u_1} {p : αBool} {l : List α} {stop : Nat} (h : stop = l.toArray.size) :
l.toArray.any p 0 stop = l.any p

Variant of any_toArray with a side condition on stop.

@[simp]
theorem List.allM_toArray' {m : TypeType u_1} {α : Type u_2} [Monad m] [LawfulMonad m] {p : αm Bool} {l : List α} {stop : Nat} (h : stop = l.toArray.size) :
Array.allM p l.toArray 0 stop = allM p l

Variant of allM_toArray with a side condition on stop.

@[simp]
theorem List.all_toArray' {α : Type u_1} {p : αBool} {l : List α} {stop : Nat} (h : stop = l.toArray.size) :
l.toArray.all p 0 stop = l.all p

Variant of all_toArray with a side condition on stop.

theorem List.anyM_toArray {m : TypeType u_1} {α : Type u_2} [Monad m] [LawfulMonad m] {p : αm Bool} {l : List α} :
theorem List.any_toArray {α : Type u_1} {p : αBool} {l : List α} :
l.toArray.any p = l.any p
theorem List.allM_toArray {m : TypeType u_1} {α : Type u_2} [Monad m] [LawfulMonad m] {p : αm Bool} {l : List α} :
theorem List.all_toArray {α : Type u_1} {p : αBool} {l : List α} :
l.toArray.all p = l.all p
theorem Array.any_eq_true' {α : Type u_1} {p : αBool} {as : Array α} :
as.any p = true (x : α), x as p x = true

Variant of any_eq_true in terms of membership rather than an array index.

theorem Array.any_eq_false' {α : Type u_1} {p : αBool} {as : Array α} :
as.any p = false ∀ (x : α), x as¬p x = true

Variant of any_eq_false in terms of membership rather than an array index.

theorem Array.all_eq_true' {α : Type u_1} {p : αBool} {as : Array α} :
as.all p = true ∀ (x : α), x asp x = true

Variant of all_eq_true in terms of membership rather than an array index.

theorem Array.all_eq_false' {α : Type u_1} {p : αBool} {as : Array α} :
as.all p = false (x : α), x as ¬p x = true

Variant of all_eq_false in terms of membership rather than an array index.

theorem Array.any_eq {α : Type u_1} {xs : Array α} {p : αBool} :
xs.any p = decide ( (i : Nat), (h : i < xs.size), p xs[i] = true)
theorem Array.any_eq' {α : Type u_1} {xs : Array α} {p : αBool} :
xs.any p = decide ( (x : α), x xs p x = true)

Variant of any_eq in terms of membership rather than an array index.

theorem Array.all_eq {α : Type u_1} {xs : Array α} {p : αBool} :
xs.all p = decide (∀ (i : Nat) (x : i < xs.size), p xs[i] = true)
theorem Array.all_eq' {α : Type u_1} {xs : Array α} {p : αBool} :
xs.all p = decide (∀ (x : α), x xsp x = true)

Variant of all_eq in terms of membership rather than an array index.

theorem Array.decide_exists_mem {α : Type u_1} {xs : Array α} {p : αProp} [DecidablePred p] :
decide ( (x : α), x xs p x) = xs.any fun (b : α) => decide (p b)
theorem Array.decide_forall_mem {α : Type u_1} {xs : Array α} {p : αProp} [DecidablePred p] :
decide (∀ (x : α), x xsp x) = xs.all fun (b : α) => decide (p b)
@[simp]
theorem List.contains_toArray {α : Type u_1} [BEq α] {l : List α} {a : α} :
theorem List.elem_toArray {α : Type u_1} [BEq α] {l : List α} {a : α} :
theorem Array.any_beq {α : Type u_1} [BEq α] {xs : Array α} {a : α} :
(xs.any fun (x : α) => a == x) = xs.contains a
theorem Array.any_beq' {α : Type u_1} {a : α} [BEq α] [PartialEquivBEq α] {xs : Array α} :
(xs.any fun (x : α) => x == a) = xs.contains a

Variant of any_beq with == reversed.

theorem Array.all_bne {α : Type u_1} {a : α} [BEq α] {xs : Array α} :
(xs.all fun (x : α) => a != x) = !xs.contains a
theorem Array.all_bne' {α : Type u_1} {a : α} [BEq α] [PartialEquivBEq α] {xs : Array α} :
(xs.all fun (x : α) => x != a) = !xs.contains a

Variant of all_bne with != reversed.

theorem Array.mem_of_contains_eq_true {α : Type u_1} [BEq α] [LawfulBEq α] {a : α} {as : Array α} :
as.contains a = truea as
@[reducible, inline, deprecated Array.mem_of_contains_eq_true (since := "2024-12-12")]
abbrev Array.mem_of_elem_eq_true {α : Type u_1} [BEq α] [LawfulBEq α] {a : α} {as : Array α} :
as.contains a = truea as
Equations
theorem Array.contains_eq_true_of_mem {α : Type u_1} [BEq α] [LawfulBEq α] {a : α} {as : Array α} (h : a as) :
@[reducible, inline, deprecated Array.contains_eq_true_of_mem (since := "2024-12-12")]
abbrev Array.elem_eq_true_of_mem {α : Type u_1} [BEq α] [LawfulBEq α] {a : α} {as : Array α} (h : a as) :
Equations
@[simp]
theorem Array.elem_eq_contains {α : Type u_1} [BEq α] {a : α} {xs : Array α} :
elem a xs = xs.contains a
theorem Array.elem_iff {α : Type u_1} [BEq α] [LawfulBEq α] {a : α} {xs : Array α} :
elem a xs = true a xs
theorem Array.contains_iff {α : Type u_1} [BEq α] [LawfulBEq α] {a : α} {xs : Array α} :
xs.contains a = true a xs
theorem Array.elem_eq_mem {α : Type u_1} [BEq α] [LawfulBEq α] {a : α} {xs : Array α} :
elem a xs = decide (a xs)
@[simp]
theorem Array.contains_eq_mem {α : Type u_1} [BEq α] [LawfulBEq α] {a : α} {xs : Array α} :
xs.contains a = decide (a xs)
@[simp]
theorem Array.any_push' {α : Type u_1} {stop : Nat} [BEq α] {xs : Array α} {a : α} {p : αBool} (h : stop = xs.size + 1) :
(xs.push a).any p 0 stop = (xs.any p || p a)

Variant of any_push with a side condition on stop.

theorem Array.any_push {α : Type u_1} [BEq α] {xs : Array α} {a : α} {p : αBool} :
(xs.push a).any p = (xs.any p || p a)
@[simp]
theorem Array.all_push' {α : Type u_1} {stop : Nat} [BEq α] {xs : Array α} {a : α} {p : αBool} (h : stop = xs.size + 1) :
(xs.push a).all p 0 stop = (xs.all p && p a)

Variant of all_push with a side condition on stop.

theorem Array.all_push {α : Type u_1} [BEq α] {xs : Array α} {a : α} {p : αBool} :
(xs.push a).all p = (xs.all p && p a)
@[simp]
theorem Array.contains_push {α : Type u_1} [BEq α] {xs : Array α} {a b : α} :
(xs.push a).contains b = (xs.contains b || b == a)

set #

@[simp]
theorem Array.getElem_set_self {α : Type u_1} {xs : Array α} {i : Nat} (h : i < xs.size) {v : α} :
(xs.set i v h)[i] = v
@[reducible, inline, deprecated Array.getElem_set_self (since := "2024-12-11")]
abbrev Array.getElem_set_eq {α : Type u_1} {xs : Array α} {i : Nat} (h : i < xs.size) {v : α} :
(xs.set i v h)[i] = v
Equations
@[simp]
theorem Array.getElem?_set_self {α : Type u_1} {xs : Array α} {i : Nat} (h : i < xs.size) {v : α} :
(xs.set i v h)[i]? = some v
@[reducible, inline, deprecated Array.getElem?_set_self (since := "2024-12-11")]
abbrev Array.getElem?_set_eq {α : Type u_1} {xs : Array α} {i : Nat} (h : i < xs.size) {v : α} :
(xs.set i v h)[i]? = some v
Equations
@[simp]
theorem Array.getElem_set_ne {α : Type u_1} {xs : Array α} {i : Nat} (h' : i < xs.size) {v : α} {j : Nat} (pj : j < xs.size) (h : i j) :
(xs.set i v h')[j] = xs[j]
@[simp]
theorem Array.getElem?_set_ne {α : Type u_1} {xs : Array α} {i : Nat} (h : i < xs.size) {v : α} {j : Nat} (ne : i j) :
(xs.set i v h)[j]? = xs[j]?
theorem Array.getElem_set {α : Type u_1} {xs : Array α} {i : Nat} (h' : i < xs.size) {v : α} {j : Nat} (h : j < (xs.set i v h').size) :
(xs.set i v h')[j] = if i = j then v else xs[j]
theorem Array.getElem?_set {α : Type u_1} {xs : Array α} {i : Nat} (h : i < xs.size) {v : α} {j : Nat} :
(xs.set i v h)[j]? = if i = j then some v else xs[j]?
@[simp]
theorem Array.set_getElem_self {α : Type u_1} {xs : Array α} {i : Nat} (h : i < xs.size) :
xs.set i xs[i] h = xs
@[simp]
theorem Array.set_eq_empty_iff {α : Type u_1} {xs : Array α} {i : Nat} {a : α} {h : i < xs.size} :
xs.set i a h = #[] xs = #[]
theorem Array.set_comm {α : Type u_1} (a b : α) {i j : Nat} {xs : Array α} {hi : i < xs.size} {hj : j < (xs.set i a hi).size} (h : i j) :
(xs.set i a hi).set j b hj = (xs.set j b ).set i a
@[simp]
theorem Array.set_set {α : Type u_1} (a : α) {b : α} {xs : Array α} {i : Nat} (h : i < xs.size) :
(xs.set i a h).set i b = xs.set i b h
theorem Array.mem_set {α : Type u_1} {xs : Array α} {i : Nat} (h : i < xs.size) {a : α} :
a xs.set i a h
theorem Array.mem_or_eq_of_mem_set {α : Type u_1} {xs : Array α} {i : Nat} {a b : α} {w : i < xs.size} (h : a xs.set i b w) :
a xs a = b

setIfInBounds #

@[reducible, inline, deprecated Array.set!_eq_setIfInBounds (since := "2024-12-12")]
Equations
@[simp]
theorem Array.size_setIfInBounds {α : Type u_1} {xs : Array α} {i : Nat} {a : α} :
(xs.setIfInBounds i a).size = xs.size
theorem Array.getElem_setIfInBounds {α : Type u_1} {xs : Array α} {i : Nat} {a : α} {j : Nat} (hj : j < xs.size) :
(xs.setIfInBounds i a)[j] = if i = j then a else xs[j]
@[simp]
theorem Array.getElem_setIfInBounds_self {α : Type u_1} {xs : Array α} {i : Nat} {a : α} (h : i < (xs.setIfInBounds i a).size) :
(xs.setIfInBounds i a)[i] = a
@[reducible, inline, deprecated Array.getElem_setIfInBounds_self (since := "2024-12-11")]
abbrev Array.getElem_setIfInBounds_eq {α : Type u_1} {xs : Array α} {i : Nat} {a : α} (h : i < (xs.setIfInBounds i a).size) :
(xs.setIfInBounds i a)[i] = a
Equations
@[simp]
theorem Array.getElem_setIfInBounds_ne {α : Type u_1} {xs : Array α} {i : Nat} {a : α} {j : Nat} (hj : j < xs.size) (h : i j) :
(xs.setIfInBounds i a)[j] = xs[j]
theorem Array.getElem?_setIfInBounds {α : Type u_1} {xs : Array α} {i j : Nat} {a : α} :
(xs.setIfInBounds i a)[j]? = if i = j then if i < xs.size then some a else none else xs[j]?
theorem Array.getElem?_setIfInBounds_self {α : Type u_1} {xs : Array α} {i : Nat} {a : α} :
@[simp]
theorem Array.getElem?_setIfInBounds_self_of_lt {α : Type u_1} {xs : Array α} {i : Nat} {a : α} (h : i < xs.size) :
(xs.setIfInBounds i a)[i]? = some a
@[reducible, inline, deprecated Array.getElem?_setIfInBounds_self (since := "2024-12-11")]
abbrev Array.getElem?_setIfInBounds_eq {α : Type u_1} {xs : Array α} {i : Nat} {a : α} :
Equations
@[simp]
theorem Array.getElem?_setIfInBounds_ne {α : Type u_1} {xs : Array α} {i j : Nat} (h : i j) {a : α} :
(xs.setIfInBounds i a)[j]? = xs[j]?
theorem Array.setIfInBounds_eq_of_size_le {α : Type u_1} {xs : Array α} {i : Nat} (h : xs.size i) {a : α} :
xs.setIfInBounds i a = xs
@[simp]
theorem Array.setIfInBounds_eq_empty_iff {α : Type u_1} {xs : Array α} {i : Nat} {a : α} :
theorem Array.setIfInBounds_comm {α : Type u_1} (a b : α) {i j : Nat} {xs : Array α} (h : i j) :
@[simp]
theorem Array.setIfInBounds_setIfInBounds {α : Type u_1} (a : α) {b : α} {xs : Array α} {i : Nat} :
theorem Array.mem_setIfInBounds {α : Type u_1} {xs : Array α} {i : Nat} {a : α} (h : i < xs.size) :
theorem Array.mem_or_eq_of_mem_setIfInBounds {α : Type u_1} {xs : Array α} {i : Nat} {a b : α} (h : a xs.setIfInBounds i b) :
a xs a = b
@[simp]
theorem Array.getD_get?_setIfInBounds {α : Type u_1} {xs : Array α} {i : Nat} {v d : α} :
(xs.setIfInBounds i v)[i]?.getD d = if i < xs.size then v else d

Simplifies a normal form from get!

@[simp]
theorem Array.toList_setIfInBounds {α : Type u_1} {xs : Array α} {i : Nat} {x : α} :
(xs.setIfInBounds i x).toList = xs.toList.set i x

BEq #

@[simp]
theorem Array.beq_empty_iff {α : Type u_1} [BEq α] {xs : Array α} :
(xs == #[]) = xs.isEmpty
@[simp]
theorem Array.empty_beq_iff {α : Type u_1} [BEq α] {xs : Array α} :
(#[] == xs) = xs.isEmpty
@[simp]
theorem Array.push_beq_push {α : Type u_1} [BEq α] {a b : α} {xs ys : Array α} :
(xs.push a == ys.push b) = (xs == ys && a == b)
theorem Array.size_eq_of_beq {α : Type u_1} [BEq α] {xs ys : Array α} (h : (xs == ys) = true) :
xs.size = ys.size
@[simp, irreducible]
theorem Array.replicate_beq_replicate {α : Type u_1} [BEq α] {a b : α} {n : Nat} :
(replicate n a == replicate n b) = (n == 0 || a == b)
@[reducible, inline, deprecated Array.replicate_beq_replicate (since := "2025-03-18")]
abbrev Array.mkArray_beq_mkArray {α : Type u_1} [BEq α] {a b : α} {n : Nat} :
(replicate n a == replicate n b) = (n == 0 || a == b)
Equations
@[simp]
theorem Array.reflBEq_iff {α : Type u_1} [BEq α] :
@[simp]
theorem Array.lawfulBEq_iff {α : Type u_1} [BEq α] :

isEqv #

@[simp]
theorem Array.isEqv_eq {α : Type u_1} [DecidableEq α] {xs ys : Array α} :
((xs.isEqv ys fun (x1 x2 : α) => x1 == x2) = true) = (xs = ys)

back #

theorem Array.back_eq_getElem {α : Type u_1} {xs : Array α} (h : 0 < xs.size) :
xs.back h = xs[xs.size - 1]
theorem Array.back?_eq_getElem? {α : Type u_1} {xs : Array α} :
xs.back? = xs[xs.size - 1]?
@[simp]
theorem Array.back_mem {α : Type u_1} {xs : Array α} (h : 0 < xs.size) :
xs.back h xs

map #

theorem Array.mapM_eq_foldlM {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} [Monad m] [LawfulMonad m] {f : αm β} {xs : Array α} :
mapM f xs = foldlM (fun (bs : Array β) (a : α) => bs.push <$> f a) #[] xs
@[irreducible]
theorem Array.mapM_eq_foldlM.aux {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} [Monad m] [LawfulMonad m] {f : αm β} {xs : Array α} (i : Nat) (bs : Array β) :
mapM.map f xs i bs = List.foldlM (fun (bs : Array β) (a : α) => bs.push <$> f a) bs (List.drop i xs.toList)
@[simp]
theorem Array.toList_map {α : Type u_1} {β : Type u_2} {f : αβ} {xs : Array α} :
(map f xs).toList = List.map f xs.toList
@[simp]
theorem List.map_toArray {α : Type u_1} {β : Type u_2} {f : αβ} {l : List α} :
@[simp]
theorem Array.size_map {α : Type u_1} {β : Type u_2} {f : αβ} {xs : Array α} :
(map f xs).size = xs.size
@[simp]
theorem Array.getElem_map {α : Type u_1} {β : Type u_2} (f : αβ) {xs : Array α} {i : Nat} (hi : i < (map f xs).size) :
(map f xs)[i] = f xs[i]
@[simp]
theorem Array.getElem?_map {α : Type u_1} {β : Type u_2} {f : αβ} {xs : Array α} {i : Nat} :
(map f xs)[i]? = Option.map f xs[i]?
@[simp]
theorem Array.mapM_empty {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} [Monad m] (f : αm β) :
@[simp]
theorem Array.map_empty {α : Type u_1} {β : Type u_2} {f : αβ} :
@[simp]
theorem Array.map_push {α : Type u_1} {β : Type u_2} {f : αβ} {as : Array α} {x : α} :
map f (as.push x) = (map f as).push (f x)
@[simp]
theorem Array.map_id_fun {α : Type u_1} :
@[simp]
theorem Array.map_id_fun' {α : Type u_1} :
(map fun (a : α) => a) = id

map_id_fun' differs from map_id_fun by representing the identity function as a lambda, rather than id.

theorem Array.map_id {α : Type u_1} (xs : Array α) :
map id xs = xs
theorem Array.map_id' {α : Type u_1} (xs : Array α) :
map (fun (a : α) => a) xs = xs

map_id' differs from map_id by representing the identity function as a lambda, rather than id.

theorem Array.map_id'' {α : Type u_1} {f : αα} (h : ∀ (x : α), f x = x) (xs : Array α) :
map f xs = xs

Variant of map_id, with a side condition that the function is pointwise the identity.

theorem Array.map_singleton {α : Type u_1} {β : Type u_2} {f : αβ} {a : α} :
map f #[a] = #[f a]
@[simp]
theorem Array.mem_map {α : Type u_1} {β : Type u_2} {b : β} {f : αβ} {xs : Array α} :
b map f xs (a : α), a xs f a = b
theorem Array.exists_of_mem_map {α✝ : Type u_1} {α✝¹ : Type u_2} {f : α✝α✝¹} {l : Array α✝} {b : α✝¹} (h : b map f l) :
(a : α✝), a l f a = b
theorem Array.mem_map_of_mem {α : Type u_1} {β : Type u_2} {l : Array α} {a : α} {f : αβ} (h : a l) :
f a map f l
theorem Array.forall_mem_map {α : Type u_1} {β : Type u_2} {f : αβ} {xs : Array α} {P : βProp} :
(∀ (i : β), i map f xsP i) ∀ (j : α), j xsP (f j)
@[simp]
theorem Array.map_eq_empty_iff {α : Type u_1} {β : Type u_2} {f : αβ} {xs : Array α} :
map f xs = #[] xs = #[]
theorem Array.eq_empty_of_map_eq_empty {α : Type u_1} {β : Type u_2} {f : αβ} {xs : Array α} (h : map f xs = #[]) :
xs = #[]
@[simp]
theorem Array.map_inj_left {α : Type u_1} {β : Type u_2} {xs : Array α} {f g : αβ} :
map f xs = map g xs ∀ (a : α), a xsf a = g a
theorem Array.map_inj_right {α : Type u_1} {β : Type u_2} {xs ys : Array α} {f : αβ} (w : ∀ (x y : α), f x = f yx = y) :
map f xs = map f ys xs = ys
theorem Array.map_congr_left {α✝ : Type u_1} {xs : Array α✝} {α✝¹ : Type u_2} {f g : α✝α✝¹} (h : ∀ (a : α✝), a xsf a = g a) :
map f xs = map g xs
theorem Array.map_inj {α✝ : Type u_1} {α✝¹ : Type u_2} {f g : α✝α✝¹} :
map f = map g f = g
theorem Array.map_eq_push_iff {α : Type u_1} {β : Type u_2} {f : αβ} {xs : Array α} {ys : Array β} {b : β} :
map f xs = ys.push b (zs : Array α), (a : α), xs = zs.push a map f zs = ys f a = b
@[simp]
theorem Array.map_eq_singleton_iff {α : Type u_1} {β : Type u_2} {f : αβ} {xs : Array α} {b : β} :
map f xs = #[b] (a : α), xs = #[a] f a = b
theorem Array.map_eq_map_iff {α : Type u_1} {β : Type u_2} {f g : αβ} {xs : Array α} :
map f xs = map g xs ∀ (a : α), a xsf a = g a
theorem Array.map_eq_iff {α : Type u_1} {β : Type u_2} {f : αβ} {xs : Array α} {ys : Array β} :
map f xs = ys ∀ (i : Nat), ys[i]? = Option.map f xs[i]?
theorem Array.map_eq_foldl {α : Type u_1} {β : Type u_2} {f : αβ} {xs : Array α} :
map f xs = foldl (fun (bs : Array β) (a : α) => bs.push (f a)) #[] xs
@[simp]
theorem Array.map_set {α : Type u_1} {β : Type u_2} {f : αβ} {xs : Array α} {i : Nat} {h : i < xs.size} {a : α} :
map f (xs.set i a h) = (map f xs).set i (f a)
@[simp]
theorem Array.map_setIfInBounds {α : Type u_1} {β : Type u_2} {f : αβ} {xs : Array α} {i : Nat} {a : α} :
map f (xs.setIfInBounds i a) = (map f xs).setIfInBounds i (f a)
@[simp]
theorem Array.map_pop {α : Type u_1} {β : Type u_2} {f : αβ} {xs : Array α} :
map f xs.pop = (map f xs).pop
@[simp]
theorem Array.back?_map {α : Type u_1} {β : Type u_2} {f : αβ} {xs : Array α} :
(map f xs).back? = Option.map f xs.back?
@[simp]
theorem Array.map_map {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f : αβ} {g : βγ} {as : Array α} :
map g (map f as) = map (g f) as
theorem Array.mapM_eq_mapM_toList {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} [Monad m] [LawfulMonad m] {f : αm β} {xs : Array α} :
@[simp]
theorem Array.toList_mapM {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} [Monad m] [LawfulMonad m] {f : αm β} {xs : Array α} :
@[irreducible, deprecated "Use `mapM_eq_foldlM` instead" (since := "2025-01-08")]
theorem Array.mapM_map_eq_foldl {α : Type u_1} {β : Type u_2} {b : Array β} {as : Array α} {f : αβ} {i : Nat} :
mapM.map f as i b = foldl (fun (acc : Array β) (a : α) => acc.push (f a)) b as i
theorem Array.array₂_induction {α : Type u_1} (P : Array (Array α)Prop) (of : ∀ (xss : List (List α)), P (List.map List.toArray xss).toArray) (xss : Array (Array α)) :
P xss

Use this as induction ass using array₂_induction on a hypothesis of the form ass : Array (Array α). The hypothesis ass will be replaced with a hypothesis ass : List (List α), and former appearances of ass in the goal will be replaced with (ass.map List.toArray).toArray.

theorem Array.array₃_induction {α : Type u_1} (P : Array (Array (Array α))Prop) (of : ∀ (xss : List (List (List α))), P (List.map List.toArray (List.map (fun (xs : List (List α)) => List.map List.toArray xs) xss)).toArray) (xss : Array (Array (Array α))) :
P xss

Use this as induction ass using array₃_induction on a hypothesis of the form ass : Array (Array (Array α)). The hypothesis ass will be replaced with a hypothesis ass : List (List (List α)), and former appearances of ass in the goal will be replaced with ((ass.map (fun xs => xs.map List.toArray)).map List.toArray).toArray.

filter #

theorem Array.filter_congr {α : Type u_1} {xs ys : Array α} (h : xs = ys) {f g : αBool} (h' : f = g) {start stop start' stop' : Nat} (h₁ : start = start') (h₂ : stop = stop') :
filter f xs start stop = filter g ys start' stop'
@[simp]
theorem Array.toList_filter' {α : Type u_1} {p : αBool} {xs : Array α} {stop : Nat} (h : stop = xs.size) :
(filter p xs 0 stop).toList = List.filter p xs.toList
theorem Array.toList_filter {α : Type u_1} {p : αBool} {xs : Array α} :
@[simp]
theorem List.filter_toArray' {α : Type u_1} {p : αBool} {l : List α} {stop : Nat} (h : stop = l.length) :
theorem List.filter_toArray {α : Type u_1} {p : αBool} {l : List α} :
@[simp]
theorem Array.filter_push_of_pos {α : Type u_1} {stop : Nat} {p : αBool} {a : α} {xs : Array α} (h : p a = true) (w : stop = xs.size + 1) :
filter p (xs.push a) 0 stop = (filter p xs).push a
@[simp]
theorem Array.filter_push_of_neg {α : Type u_1} {stop : Nat} {p : αBool} {a : α} {xs : Array α} (h : ¬p a = true) (w : stop = xs.size + 1) :
filter p (xs.push a) 0 stop = filter p xs
theorem Array.filter_push {α : Type u_1} {p : αBool} {a : α} {xs : Array α} :
filter p (xs.push a) = if p a = true then (filter p xs).push a else filter p xs
theorem Array.size_filter_le {α : Type u_1} {p : αBool} {xs : Array α} :
(filter p xs).size xs.size
@[simp]
theorem Array.filter_eq_self {α : Type u_1} {p : αBool} {xs : Array α} :
filter p xs = xs ∀ (a : α), a xsp a = true
@[simp]
theorem Array.filter_size_eq_size {α : Type u_1} {p : αBool} {xs : Array α} :
(filter p xs).size = xs.size ∀ (a : α), a xsp a = true
@[simp]
theorem Array.mem_filter {α : Type u_1} {p : αBool} {xs : Array α} {a : α} :
a filter p xs a xs p a = true
@[simp]
theorem Array.filter_eq_empty_iff {α : Type u_1} {p : αBool} {xs : Array α} :
filter p xs = #[] ∀ (a : α), a xs¬p a = true
theorem Array.forall_mem_filter {α : Type u_1} {p : αBool} {xs : Array α} {P : αProp} :
(∀ (i : α), i filter p xsP i) ∀ (j : α), j xsp j = trueP j
@[simp]
theorem Array.filter_filter {α : Type u_1} {p q : αBool} {xs : Array α} :
filter p (filter q xs) = filter (fun (a : α) => p a && q a) xs
theorem Array.foldl_filter {α : Type u_1} {β : Type u_2} {p : αBool} {f : βαβ} {xs : Array α} {init : β} :
foldl f init (filter p xs) = foldl (fun (x : β) (y : α) => if p y = true then f x y else x) init xs
theorem Array.foldr_filter {α : Type u_1} {β : Type u_2} {p : αBool} {f : αββ} {xs : Array α} {init : β} :
foldr f init (filter p xs) = foldr (fun (x : α) (y : β) => if p x = true then f x y else y) init xs
theorem Array.filter_map {β : Type u_1} {α : Type u_2} {p : αBool} {f : βα} {xs : Array β} :
filter p (map f xs) = map f (filter (p f) xs)
theorem Array.map_filter_eq_foldl {α : Type u_1} {β : Type u_2} {f : αβ} {p : αBool} {xs : Array α} :
map f (filter p xs) = foldl (fun (acc : Array β) (x : α) => bif p x then acc.push (f x) else acc) #[] xs
@[simp]
theorem Array.filter_append {α : Type u_1} {p : αBool} {xs ys : Array α} {stop : Nat} (w : stop = xs.size + ys.size) :
filter p (xs ++ ys) 0 stop = filter p xs ++ filter p ys
theorem Array.filter_eq_append_iff {α : Type u_1} {xs ys zs : Array α} {p : αBool} :
filter p xs = ys ++ zs (as : Array α), (bs : Array α), xs = as ++ bs filter p as = ys filter p bs = zs
theorem Array.filter_eq_push_iff {α : Type u_1} {p : αBool} {xs ys : Array α} {a : α} :
filter p xs = ys.push a (as : Array α), (bs : Array α), xs = as.push a ++ bs filter p as = ys p a = true ∀ (x : α), x bs¬p x = true
theorem Array.mem_of_mem_filter {α : Type u_1} {p : αBool} {a : α} {xs : Array α} (h : a filter p xs) :
a xs
@[simp]
theorem Array.size_filter_pos_iff {α : Type u_1} {xs : Array α} {p : αBool} :
0 < (filter p xs).size (x : α), x xs p x = true
@[simp]
theorem Array.size_filter_lt_size_iff_exists {α : Type u_1} {xs : Array α} {p : αBool} :
(filter p xs).size < xs.size (x : α), x xs ¬p x = true

filterMap #

theorem Array.filterMap_congr {α : Type u_1} {β : Type u_2} {as bs : Array α} (h : as = bs) {f g : αOption β} (h' : f = g) {start stop start' stop' : Nat} (h₁ : start = start') (h₂ : stop = stop') :
filterMap f as start stop = filterMap g bs start' stop'
@[simp]
theorem Array.toList_filterMap' {α : Type u_1} {β : Type u_2} {f : αOption β} {xs : Array α} {stop : Nat} (w : stop = xs.size) :
theorem Array.toList_filterMap {α : Type u_1} {β : Type u_2} {f : αOption β} {xs : Array α} :
@[simp]
theorem List.filterMap_toArray' {α : Type u_1} {β : Type u_2} {f : αOption β} {l : List α} {stop : Nat} (h : stop = l.length) :
theorem List.filterMap_toArray {α : Type u_1} {β : Type u_2} {f : αOption β} {l : List α} :
@[simp]
theorem Array.filterMap_push_none {α : Type u_1} {β : Type u_2} {stop : Nat} {f : αOption β} {a : α} {xs : Array α} (h : f a = none) (w : stop = xs.size + 1) :
filterMap f (xs.push a) 0 stop = filterMap f xs
@[simp]
theorem Array.filterMap_push_some {α : Type u_1} {β : Type u_2} {stop : Nat} {f : αOption β} {a : α} {xs : Array α} {b : β} (h : f a = some b) (w : stop = xs.size + 1) :
filterMap f (xs.push a) 0 stop = (filterMap f xs).push b
@[simp]
theorem Array.filterMap_eq_map {α : Type u_1} {β : Type u_2} {stop : Nat} {as : Array α} {f : αβ} (w : stop = as.size) :
filterMap (some f) as 0 stop = map f as
@[simp]
theorem Array.filterMap_eq_map' {α : Type u_1} {β : Type u_2} {stop : Nat} {as : Array α} {f : αβ} (w : stop = as.size) :
filterMap (fun (x : α) => some (f x)) as 0 stop = map f as

Variant of filterMap_eq_map with some ∘ f expanded out to a lambda.

theorem Array.filterMap_some_fun {α : Type u_1} :
(fun (as : Array α) => filterMap some as) = id
@[simp]
theorem Array.filterMap_some {α : Type u_1} {xs : Array α} :
theorem Array.map_filterMap_some_eq_filterMap_isSome {α : Type u_1} {β : Type u_2} {f : αOption β} {xs : Array α} :
map some (filterMap f xs) = filter (fun (b : Option β) => b.isSome) (map f xs)
theorem Array.size_filterMap_le {α : Type u_1} {β : Type u_2} {f : αOption β} {xs : Array α} :
@[simp]
theorem Array.filterMap_size_eq_size {α : Type u_1} {α✝ : Type u_2} {f : αOption α✝} {xs : Array α} :
(filterMap f xs).size = xs.size ∀ (a : α), a xs(f a).isSome = true
@[simp]
theorem Array.filterMap_eq_filter {α : Type u_1} {stop : Nat} {as : Array α} {p : αBool} (w : stop = as.size) :
filterMap (Option.guard fun (x : α) => p x = true) as 0 stop = filter p as
theorem Array.filterMap_filterMap {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f : αOption β} {g : βOption γ} {xs : Array α} :
filterMap g (filterMap f xs) = filterMap (fun (x : α) => (f x).bind g) xs
theorem Array.map_filterMap {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f : αOption β} {g : βγ} {xs : Array α} :
map g (filterMap f xs) = filterMap (fun (x : α) => Option.map g (f x)) xs
@[simp]
theorem Array.filterMap_map {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f : αβ} {g : βOption γ} {xs : Array α} :
filterMap g (map f xs) = filterMap (g f) xs
theorem Array.filter_filterMap {α : Type u_1} {β : Type u_2} {f : αOption β} {p : βBool} {xs : Array α} :
filter p (filterMap f xs) = filterMap (fun (x : α) => Option.filter p (f x)) xs
theorem Array.filterMap_filter {α : Type u_1} {β : Type u_2} {p : αBool} {f : αOption β} {xs : Array α} :
filterMap f (filter p xs) = filterMap (fun (x : α) => if p x = true then f x else none) xs
@[simp]
theorem Array.mem_filterMap {α : Type u_1} {β : Type u_2} {f : αOption β} {xs : Array α} {b : β} :
b filterMap f xs (a : α), a xs f a = some b
theorem Array.forall_mem_filterMap {α : Type u_1} {β : Type u_2} {f : αOption β} {xs : Array α} {P : βProp} :
(∀ (i : β), i filterMap f xsP i) ∀ (j : α), j xs∀ (b : β), f j = some bP b
@[simp]
theorem Array.filterMap_append {α : Type u_1} {β : Type u_2} {xs ys : Array α} {f : αOption β} {stop : Nat} (w : stop = xs.size + ys.size) :
filterMap f (xs ++ ys) 0 stop = filterMap f xs ++ filterMap f ys
theorem Array.map_filterMap_of_inv {α : Type u_1} {β : Type u_2} {f : αOption β} {g : βα} (H : ∀ (x : α), Option.map g (f x) = some x) {xs : Array α} :
map g (filterMap f xs) = xs
theorem Array.forall_none_of_filterMap_eq_empty {α✝ : Type u_1} {α✝¹ : Type u_2} {f : α✝Option α✝¹} {xs : Array α✝} (h : filterMap f xs = #[]) (x : α✝) :
x xsf x = none
@[simp]
theorem Array.filterMap_eq_nil_iff {α : Type u_1} {α✝ : Type u_2} {f : αOption α✝} {xs : Array α} :
filterMap f xs = #[] ∀ (a : α), a xsf a = none
theorem Array.filterMap_eq_push_iff {α : Type u_1} {β : Type u_2} {f : αOption β} {xs : Array α} {ys : Array β} {b : β} :
filterMap f xs = ys.push b (as : Array α), (a : α), (bs : Array α), xs = as.push a ++ bs filterMap f as = ys f a = some b ∀ (x : α), x bsf x = none
@[simp]
theorem Array.size_filterMap_pos_iff {α : Type u_1} {β : Type u_2} {xs : Array α} {f : αOption β} :
0 < (filterMap f xs).size (x : α), (x_1 : x xs), (b : β), f x = some b
@[simp]
theorem Array.size_filterMap_lt_size_iff_exists {α : Type u_1} {β : Type u_2} {xs : Array α} {f : αOption β} :
(filterMap f xs).size < xs.size (x : α), (x_1 : x xs), f x = none

singleton #

@[simp]
theorem Array.singleton_def {α : Type u_1} {v : α} :

append #

@[simp]
theorem Array.size_append {α : Type u_1} {xs ys : Array α} :
(xs ++ ys).size = xs.size + ys.size
@[simp]
theorem Array.push_append {α : Type u_1} {a : α} {xs ys : Array α} :
(xs ++ ys).push a = xs ++ ys.push a
theorem Array.append_push {α : Type u_1} {xs ys : Array α} {a : α} :
xs ++ ys.push a = (xs ++ ys).push a
theorem Array.toArray_append {α : Type u_1} {xs : List α} {ys : Array α} :
xs.toArray ++ ys = (xs ++ ys.toList).toArray
@[simp]
theorem Array.toArray_eq_append_iff {α : Type u_1} {xs : List α} {as bs : Array α} :
xs.toArray = as ++ bs xs = as.toList ++ bs.toList
@[simp]
theorem Array.append_eq_toArray_iff {α : Type u_1} {xs ys : Array α} {as : List α} :
xs ++ ys = as.toArray xs.toList ++ ys.toList = as
@[simp]
theorem Array.empty_append_fun {α : Type u_1} :
(fun (x : Array α) => #[] ++ x) = id
@[simp]
theorem Array.mem_append {α : Type u_1} {a : α} {xs ys : Array α} :
a xs ++ ys a xs a ys
theorem Array.mem_append_left {α : Type u_1} {a : α} {xs : Array α} (ys : Array α) (h : a xs) :
a xs ++ ys
theorem Array.mem_append_right {α : Type u_1} {a : α} (xs : Array α) {ys : Array α} (h : a ys) :
a xs ++ ys
theorem Array.not_mem_append {α : Type u_1} {a : α} {xs ys : Array α} (h₁ : ¬a xs) (h₂ : ¬a ys) :
¬a xs ++ ys
theorem Array.append_of_mem {α : Type u_1} {a : α} {xs : Array α} (h : a xs) :
(as : Array α), (bs : Array α), xs = as.push a ++ bs

See also eq_push_append_of_mem, which proves a stronger version in which the initial array must not contain the element.

theorem Array.mem_iff_append {α : Type u_1} {a : α} {xs : Array α} :
a xs (as : Array α), (bs : Array α), xs = as.push a ++ bs
theorem Array.forall_mem_append {α : Type u_1} {p : αProp} {xs ys : Array α} :
(∀ (x : α), x xs ++ ysp x) (∀ (x : α), x xsp x) ∀ (x : α), x ysp x
theorem Array.getElem_append {α : Type u_1} {i : Nat} {xs ys : Array α} (h : i < (xs ++ ys).size) :
(xs ++ ys)[i] = if h' : i < xs.size then xs[i] else ys[i - xs.size]
@[simp]
theorem Array.getElem_append_left {α : Type u_1} {i : Nat} {xs ys : Array α} {h : i < (xs ++ ys).size} (hlt : i < xs.size) :
(xs ++ ys)[i] = xs[i]
@[simp]
theorem Array.getElem_append_right {α : Type u_1} {i : Nat} {xs ys : Array α} {h : i < (xs ++ ys).size} (hle : xs.size i) :
(xs ++ ys)[i] = ys[i - xs.size]
theorem Array.getElem?_append_left {α : Type u_1} {xs ys : Array α} {i : Nat} (hn : i < xs.size) :
(xs ++ ys)[i]? = xs[i]?
theorem Array.getElem?_append_right {α : Type u_1} {xs ys : Array α} {i : Nat} (h : xs.size i) :
(xs ++ ys)[i]? = ys[i - xs.size]?
theorem Array.getElem?_append {α : Type u_1} {xs ys : Array α} {i : Nat} :
(xs ++ ys)[i]? = if i < xs.size then xs[i]? else ys[i - xs.size]?
theorem Array.getElem_append_left' {α : Type u_1} {xs : Array α} {i : Nat} (hi : i < xs.size) (ys : Array α) :
xs[i] = (xs ++ ys)[i]

Variant of getElem_append_left useful for rewriting from the small array to the big array.

theorem Array.getElem_append_right' {α : Type u_1} (xs : Array α) {ys : Array α} {i : Nat} (hi : i < ys.size) :
ys[i] = (xs ++ ys)[i + xs.size]

Variant of getElem_append_right useful for rewriting from the small array to the big array.

theorem Array.getElem_of_append {α : Type u_1} {a : α} {i : Nat} {xs ys zs : Array α} (eq : xs = ys.push a ++ zs) (h : ys.size = i) :
xs[i] = a
@[simp]
theorem Array.append_singleton {α : Type u_1} {a : α} {as : Array α} :
as ++ #[a] = as.push a
@[simp]
theorem Array.append_singleton_assoc {α : Type u_1} {a : α} {xs ys : Array α} :
xs ++ (#[a] ++ ys) = xs.push a ++ ys
theorem Array.push_eq_append {α : Type u_1} {a : α} {as : Array α} :
as.push a = as ++ #[a]
theorem Array.append_inj {α : Type u_1} {xs₁ xs₂ ys₁ ys₂ : Array α} (h : xs₁ ++ ys₁ = xs₂ ++ ys₂) (hl : xs₁.size = xs₂.size) :
xs₁ = xs₂ ys₁ = ys₂
theorem Array.append_inj_right {α : Type u_1} {xs₁ xs₂ ys₁ ys₂ : Array α} (h : xs₁ ++ ys₁ = xs₂ ++ ys₂) (hl : xs₁.size = xs₂.size) :
ys₁ = ys₂
theorem Array.append_inj_left {α : Type u_1} {xs₁ xs₂ ys₁ ys₂ : Array α} (h : xs₁ ++ ys₁ = xs₂ ++ ys₂) (hl : xs₁.size = xs₂.size) :
xs₁ = xs₂
theorem Array.append_inj' {α : Type u_1} {xs₁ xs₂ ys₁ ys₂ : Array α} (h : xs₁ ++ ys₁ = xs₂ ++ ys₂) (hl : ys₁.size = ys₂.size) :
xs₁ = xs₂ ys₁ = ys₂

Variant of append_inj instead requiring equality of the sizes of the second arrays.

theorem Array.append_inj_right' {α : Type u_1} {xs₁ xs₂ ys₁ ys₂ : Array α} (h : xs₁ ++ ys₁ = xs₂ ++ ys₂) (hl : ys₁.size = ys₂.size) :
ys₁ = ys₂

Variant of append_inj_right instead requiring equality of the sizes of the second arrays.

theorem Array.append_inj_left' {α : Type u_1} {xs₁ xs₂ ys₁ ys₂ : Array α} (h : xs₁ ++ ys₁ = xs₂ ++ ys₂) (hl : ys₁.size = ys₂.size) :
xs₁ = xs₂

Variant of append_inj_left instead requiring equality of the sizes of the second arrays.

theorem Array.append_right_inj {α : Type u_1} {ys₁ ys₂ : Array α} (xs : Array α) :
xs ++ ys₁ = xs ++ ys₂ ys₁ = ys₂
theorem Array.append_left_inj {α : Type u_1} {xs₁ xs₂ : Array α} (ys : Array α) :
xs₁ ++ ys = xs₂ ++ ys xs₁ = xs₂
@[simp]
theorem Array.append_left_eq_self {α : Type u_1} {xs ys : Array α} :
xs ++ ys = ys xs = #[]
@[simp]
theorem Array.self_eq_append_left {α : Type u_1} {xs ys : Array α} :
ys = xs ++ ys xs = #[]
@[simp]
theorem Array.append_right_eq_self {α : Type u_1} {xs ys : Array α} :
xs ++ ys = xs ys = #[]
@[simp]
theorem Array.self_eq_append_right {α : Type u_1} {xs ys : Array α} :
xs = xs ++ ys ys = #[]
@[simp]
theorem Array.append_eq_empty_iff {α : Type u_1} {xs ys : Array α} :
xs ++ ys = #[] xs = #[] ys = #[]
@[simp]
theorem Array.empty_eq_append_iff {α : Type u_1} {xs ys : Array α} :
#[] = xs ++ ys xs = #[] ys = #[]
theorem Array.append_ne_empty_of_left_ne_empty {α : Type u_1} {xs ys : Array α} (h : xs #[]) :
xs ++ ys #[]
theorem Array.append_ne_empty_of_right_ne_empty {α : Type u_1} {xs ys : Array α} (h : ys #[]) :
xs ++ ys #[]
theorem Array.append_eq_push_iff {α : Type u_1} {xs ys zs : Array α} {x : α} :
xs ++ ys = zs.push x ys = #[] xs = zs.push x (ys' : Array α), ys = ys'.push x zs = xs ++ ys'
theorem Array.push_eq_append_iff {α : Type u_1} {xs ys zs : Array α} {x : α} :
zs.push x = xs ++ ys ys = #[] xs = zs.push x (ys' : Array α), ys = ys'.push x zs = xs ++ ys'
theorem Array.append_eq_singleton_iff {α : Type u_1} {xs ys : Array α} {x : α} :
xs ++ ys = #[x] xs = #[] ys = #[x] xs = #[x] ys = #[]
theorem Array.singleton_eq_append_iff {α : Type u_1} {xs ys : Array α} {x : α} :
#[x] = xs ++ ys xs = #[] ys = #[x] xs = #[x] ys = #[]
theorem Array.append_eq_append_iff {α : Type u_1} {ws xs ys zs : Array α} :
ws ++ xs = ys ++ zs ( (as : Array α), ys = ws ++ as xs = as ++ zs) (cs : Array α), ws = ys ++ cs zs = cs ++ xs
theorem Array.set_append {α : Type u_1} {xs ys : Array α} {i : Nat} {x : α} (h : i < (xs ++ ys).size) :
(xs ++ ys).set i x h = if h' : i < xs.size then xs.set i x h' ++ ys else xs ++ ys.set (i - xs.size) x
@[simp]
theorem Array.set_append_left {α : Type u_1} {xs ys : Array α} {i : Nat} {x : α} (h : i < xs.size) :
(xs ++ ys).set i x = xs.set i x h ++ ys
@[simp]
theorem Array.set_append_right {α : Type u_1} {xs ys : Array α} {i : Nat} {x : α} (h' : i < (xs ++ ys).size) (h : xs.size i) :
(xs ++ ys).set i x h' = xs ++ ys.set (i - xs.size) x
theorem Array.setIfInBounds_append {α : Type u_1} {xs ys : Array α} {i : Nat} {x : α} :
(xs ++ ys).setIfInBounds i x = if i < xs.size then xs.setIfInBounds i x ++ ys else xs ++ ys.setIfInBounds (i - xs.size) x
@[simp]
theorem Array.setIfInBounds_append_left {α : Type u_1} {xs ys : Array α} {i : Nat} {x : α} (h : i < xs.size) :
(xs ++ ys).setIfInBounds i x = xs.setIfInBounds i x ++ ys
@[simp]
theorem Array.setIfInBounds_append_right {α : Type u_1} {xs ys : Array α} {i : Nat} {x : α} (h : xs.size i) :
(xs ++ ys).setIfInBounds i x = xs ++ ys.setIfInBounds (i - xs.size) x
theorem Array.filterMap_eq_append_iff {α : Type u_1} {β : Type u_2} {xs : Array α} {ys zs : Array β} {f : αOption β} :
filterMap f xs = ys ++ zs (as : Array α), (bs : Array α), xs = as ++ bs filterMap f as = ys filterMap f bs = zs
theorem Array.append_eq_filterMap_iff {α : Type u_1} {β : Type u_2} {xs ys : Array β} {zs : Array α} {f : αOption β} :
xs ++ ys = filterMap f zs (as : Array α), (bs : Array α), zs = as ++ bs filterMap f as = xs filterMap f bs = ys
@[simp]
theorem Array.map_append {α : Type u_1} {β : Type u_2} {f : αβ} {xs ys : Array α} :
map f (xs ++ ys) = map f xs ++ map f ys
theorem Array.map_eq_append_iff {α : Type u_1} {β : Type u_2} {xs : Array α} {ys zs : Array β} {f : αβ} :
map f xs = ys ++ zs (as : Array α), (bs : Array α), xs = as ++ bs map f as = ys map f bs = zs
theorem Array.append_eq_map_iff {α : Type u_1} {β : Type u_2} {xs ys : Array β} {zs : Array α} {f : αβ} :
xs ++ ys = map f zs (as : Array α), (bs : Array α), zs = as ++ bs map f as = xs map f bs = ys

flatten #

@[simp]
theorem Array.flatten_empty {α : Type u_1} :
@[simp]
theorem Array.toList_flatten {α : Type u_1} {xss : Array (Array α)} :
@[simp]
theorem Array.size_flatten {α : Type u_1} {xss : Array (Array α)} :
xss.flatten.size = (map size xss).sum
@[simp]
theorem Array.flatten_singleton {α : Type u_1} {xs : Array α} :
theorem Array.mem_flatten {α : Type u_1} {a : α} {xss : Array (Array α)} :
a xss.flatten (xs : Array α), xs xss a xs
@[simp]
theorem Array.flatten_eq_empty_iff {α : Type u_1} {xss : Array (Array α)} :
xss.flatten = #[] ∀ (xs : Array α), xs xssxs = #[]
@[simp]
theorem Array.empty_eq_flatten_iff {α : Type u_1} {xss : Array (Array α)} :
#[] = xss.flatten ∀ (xs : Array α), xs xssxs = #[]
theorem Array.flatten_ne_empty_iff {α : Type u_1} {xss : Array (Array α)} :
xss.flatten #[] (xs : Array α), xs xss xs #[]
theorem Array.exists_of_mem_flatten {α✝ : Type u_1} {xss : Array (Array α✝)} {x : α✝} :
x xss.flatten (xs : Array α✝), xs xss x xs
theorem Array.mem_flatten_of_mem {α✝ : Type u_1} {xss : Array (Array α✝)} {xs : Array α✝} {a : α✝} (ml : xs xss) (ma : a xs) :
a xss.flatten
theorem Array.forall_mem_flatten {α : Type u_1} {p : αProp} {xss : Array (Array α)} :
(∀ (x : α), x xss.flattenp x) ∀ (xs : Array α), xs xss∀ (x : α), x xsp x
theorem Array.flatten_eq_flatMap {α : Type u_1} {xss : Array (Array α)} :
@[simp]
theorem Array.map_flatten {α : Type u_1} {β : Type u_2} {f : αβ} {xss : Array (Array α)} :
map f xss.flatten = (map (map f) xss).flatten
@[simp]
theorem Array.filterMap_flatten {α : Type u_1} {β : Type u_2} {f : αOption β} {xss : Array (Array α)} {stop : Nat} (w : stop = xss.flatten.size) :
filterMap f xss.flatten 0 stop = (map (fun (as : Array α) => filterMap f as) xss).flatten
@[simp]
theorem Array.filter_flatten {α : Type u_1} {p : αBool} {xss : Array (Array α)} {stop : Nat} (w : stop = xss.flatten.size) :
filter p xss.flatten 0 stop = (map (fun (as : Array α) => filter p as) xss).flatten
theorem Array.flatten_filter_not_isEmpty {α : Type u_1} {xss : Array (Array α)} :
(filter (fun (xs : Array α) => !xs.isEmpty) xss).flatten = xss.flatten
theorem Array.flatten_filter_ne_empty {α : Type u_1} [DecidablePred fun (xs : Array α) => xs #[]] {xss : Array (Array α)} :
(filter (fun (xs : Array α) => decide (xs #[])) xss).flatten = xss.flatten
@[simp]
theorem Array.flatten_append {α : Type u_1} {xss₁ xss₂ : Array (Array α)} :
(xss₁ ++ xss₂).flatten = xss₁.flatten ++ xss₂.flatten
theorem Array.flatten_push {α : Type u_1} {xss : Array (Array α)} {xs : Array α} :
(xss.push xs).flatten = xss.flatten ++ xs
theorem Array.flatten_flatten {α : Type u_1} {xss : Array (Array (Array α))} :
theorem Array.flatten_eq_push_iff {α : Type u_1} {xss : Array (Array α)} {ys : Array α} {y : α} :
xss.flatten = ys.push y (as : Array (Array α)), (bs : Array α), (cs : Array (Array α)), xss = as.push (bs.push y) ++ cs (∀ (xs : Array α), xs csxs = #[]) ys = as.flatten ++ bs
theorem Array.push_eq_flatten_iff {α : Type u_1} {xss : Array (Array α)} {ys : Array α} {y : α} :
ys.push y = xss.flatten (as : Array (Array α)), (bs : Array α), (cs : Array (Array α)), xss = as.push (bs.push y) ++ cs (∀ (xs : Array α), xs csxs = #[]) ys = as.flatten ++ bs
theorem Array.eq_iff_flatten_eq {α : Type u_1} {xss₁ xss₂ : Array (Array α)} :
xss₁ = xss₂ xss₁.flatten = xss₂.flatten map size xss₁ = map size xss₂

Two arrays of subarrays are equal iff their flattens coincide, as well as the sizes of the subarrays.

flatMap #

theorem Array.flatMap_def {α : Type u_1} {β : Type u_2} {xs : Array α} {f : αArray β} :
flatMap f xs = (map f xs).flatten
@[simp]
theorem Array.flatMap_empty {α : Type u_1} {β : Type u_2} {f : αArray β} :
theorem Array.flatMap_toList {α : Type u_1} {β : Type u_2} {xs : Array α} {f : αList β} :
List.flatMap f xs.toList = (flatMap (fun (a : α) => (f a).toArray) xs).toList
@[simp]
theorem Array.toList_flatMap {α : Type u_1} {β : Type u_2} {xs : Array α} {f : αArray β} :
(flatMap f xs).toList = List.flatMap (fun (a : α) => (f a).toList) xs.toList
theorem Array.flatMap_toArray_cons {α : Type u_1} {β : Type u_2} {f : αArray β} {a : α} {as : List α} :
flatMap f (a :: as).toArray = f a ++ flatMap f as.toArray
@[simp]
theorem Array.flatMap_toArray {α : Type u_1} {β : Type u_2} {f : αArray β} {as : List α} :
flatMap f as.toArray = (List.flatMap (fun (a : α) => (f a).toList) as).toArray
@[simp]
theorem Array.flatMap_id {α : Type u_1} {xss : Array (Array α)} :
@[simp]
theorem Array.flatMap_id' {α : Type u_1} {xss : Array (Array α)} :
flatMap (fun (xs : Array α) => xs) xss = xss.flatten
@[simp]
theorem Array.size_flatMap {α : Type u_1} {β : Type u_2} {xs : Array α} {f : αArray β} :
(flatMap f xs).size = (map (fun (a : α) => (f a).size) xs).sum
@[simp]
theorem Array.mem_flatMap {α : Type u_1} {β : Type u_2} {f : αArray β} {b : β} {xs : Array α} :
b flatMap f xs (a : α), a xs b f a
theorem Array.exists_of_mem_flatMap {β : Type u_1} {α : Type u_2} {b : β} {xs : Array α} {f : αArray β} :
b flatMap f xs (a : α), a xs b f a
theorem Array.mem_flatMap_of_mem {β : Type u_1} {α : Type u_2} {b : β} {xs : Array α} {f : αArray β} {a : α} (al : a xs) (h : b f a) :
b flatMap f xs
@[simp]
theorem Array.flatMap_eq_empty_iff {α : Type u_1} {β : Type u_2} {xs : Array α} {f : αArray β} :
flatMap f xs = #[] ∀ (x : α), x xsf x = #[]
theorem Array.forall_mem_flatMap {β : Type u_1} {α : Type u_2} {p : βProp} {xs : Array α} {f : αArray β} :
(∀ (x : β), x flatMap f xsp x) ∀ (a : α), a xs∀ (b : β), b f ap b
theorem Array.flatMap_singleton {α : Type u_1} {β : Type u_2} {f : αArray β} {x : α} :
flatMap f #[x] = f x
@[simp]
theorem Array.flatMap_singleton' {α : Type u_1} (xs : Array α) :
flatMap (fun (x : α) => #[x]) xs = xs
@[simp]
theorem Array.flatMap_append {α : Type u_1} {β : Type u_2} {xs ys : Array α} {f : αArray β} :
flatMap f (xs ++ ys) = flatMap f xs ++ flatMap f ys
theorem Array.flatMap_assoc {α : Type u_1} {β : Type u_2} {γ : Type u_3} {xs : Array α} {f : αArray β} {g : βArray γ} :
flatMap g (flatMap f xs) = flatMap (fun (x : α) => flatMap g (f x)) xs
theorem Array.map_flatMap {β : Type u_1} {γ : Type u_2} {α : Type u_3} {f : βγ} {g : αArray β} {xs : Array α} :
map f (flatMap g xs) = flatMap (fun (a : α) => map f (g a)) xs
theorem Array.flatMap_map {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f : αβ} {g : βArray γ} {xs : Array α} :
flatMap g (map f xs) = flatMap (fun (a : α) => g (f a)) xs
theorem Array.map_eq_flatMap {α : Type u_1} {β : Type u_2} {f : αβ} {xs : Array α} :
map f xs = flatMap (fun (x : α) => #[f x]) xs
theorem Array.filterMap_flatMap {α : Type u_1} {β : Type u_2} {γ : Type u_3} {xs : Array α} {g : αArray β} {f : βOption γ} :
filterMap f (flatMap g xs) = flatMap (fun (a : α) => filterMap f (g a)) xs
theorem Array.filter_flatMap {α : Type u_1} {β : Type u_2} {xs : Array α} {g : αArray β} {f : βBool} :
filter f (flatMap g xs) = flatMap (fun (a : α) => filter f (g a)) xs
theorem Array.flatMap_eq_foldl {α : Type u_1} {β : Type u_2} {f : αArray β} {xs : Array α} :
flatMap f xs = foldl (fun (acc : Array β) (a : α) => acc ++ f a) #[] xs

replicate #

@[simp]
theorem Array.replicate_one {α✝ : Type u_1} {a : α✝} :
@[reducible, inline, deprecated Array.replicate_one (since := "2025-03-18")]
abbrev Array.mkArray_one {α✝ : Type u_1} {a : α✝} :
Equations
theorem Array.replicate_succ' {n : Nat} {α✝ : Type u_1} {a : α✝} :
replicate (n + 1) a = #[a] ++ replicate n a

Variant of replicate_succ that prepends a at the beginning of the array.

@[reducible, inline, deprecated Array.replicate_succ' (since := "2025-03-18")]
abbrev Array.mkArray_succ' {n : Nat} {α✝ : Type u_1} {a : α✝} :
replicate (n + 1) a = #[a] ++ replicate n a
Equations
@[simp]
theorem Array.mem_replicate {α : Type u_1} {a b : α} {n : Nat} :
b replicate n a n 0 b = a
@[reducible, inline, deprecated Array.mem_replicate (since := "2025-03-18")]
abbrev Array.mem_mkArray {α : Type u_1} {a b : α} {n : Nat} :
b replicate n a n 0 b = a
Equations
theorem Array.eq_of_mem_replicate {α : Type u_1} {a b : α} {n : Nat} (h : b replicate n a) :
b = a
@[reducible, inline, deprecated Array.eq_of_mem_mkArray (since := "2025-03-18")]
abbrev Array.eq_of_mem_mkArray {α : Type u_1} {a b : α} {n : Nat} (h : b replicate n a) :
b = a
Equations
theorem Array.forall_mem_replicate {α : Type u_1} {p : αProp} {a : α} {n : Nat} :
(∀ (b : α), b replicate n ap b) n = 0 p a
@[reducible, inline, deprecated Array.forall_mem_replicate (since := "2025-03-18")]
abbrev Array.forall_mem_mkArray {α : Type u_1} {p : αProp} {a : α} {n : Nat} :
(∀ (b : α), b replicate n ap b) n = 0 p a
Equations
@[simp]
theorem Array.replicate_succ_ne_empty {α : Type u_1} {n : Nat} {a : α} :
replicate (n + 1) a #[]
@[reducible, inline, deprecated Array.replicate_succ_ne_empty (since := "2025-03-18")]
abbrev Array.mkArray_succ_ne_empty {α : Type u_1} {n : Nat} {a : α} :
replicate (n + 1) a #[]
Equations
@[simp]
theorem Array.replicate_eq_empty_iff {α : Type u_1} {n : Nat} {a : α} :
replicate n a = #[] n = 0
@[reducible, inline, deprecated Array.replicate_eq_empty_iff (since := "2025-03-18")]
abbrev Array.mkArray_eq_empty_iff {α : Type u_1} {n : Nat} {a : α} :
replicate n a = #[] n = 0
Equations
@[simp]
theorem Array.replicate_inj {n : Nat} {α✝ : Type u_1} {a : α✝} {m : Nat} {b : α✝} :
replicate n a = replicate m b n = m (n = 0 a = b)
@[reducible, inline, deprecated Array.replicate_inj (since := "2025-03-18")]
abbrev Array.mkArray_inj {n : Nat} {α✝ : Type u_1} {a : α✝} {m : Nat} {b : α✝} :
replicate n a = replicate m b n = m (n = 0 a = b)
Equations
theorem Array.eq_replicate_of_mem {α : Type u_1} {a : α} {xs : Array α} (h : ∀ (b : α), b xsb = a) :
xs = replicate xs.size a
@[reducible, inline, deprecated Array.eq_replicate_of_mem (since := "2025-03-18")]
abbrev Array.eq_mkArray_of_mem {α : Type u_1} {a : α} {xs : Array α} (h : ∀ (b : α), b xsb = a) :
xs = replicate xs.size a
Equations
theorem Array.eq_replicate_iff {α : Type u_1} {a : α} {n : Nat} {xs : Array α} :
xs = replicate n a xs.size = n ∀ (b : α), b xsb = a
@[reducible, inline, deprecated Array.eq_replicate_iff (since := "2025-03-18")]
abbrev Array.eq_mkArray_iff {α : Type u_1} {a : α} {n : Nat} {xs : Array α} :
xs = replicate n a xs.size = n ∀ (b : α), b xsb = a
Equations
theorem Array.map_eq_replicate_iff {α : Type u_1} {β : Type u_2} {xs : Array α} {f : αβ} {b : β} :
map f xs = replicate xs.size b ∀ (x : α), x xsf x = b
@[reducible, inline, deprecated Array.map_eq_replicate_iff (since := "2025-03-18")]
abbrev Array.map_eq_mkArray_iff {α : Type u_1} {β : Type u_2} {xs : Array α} {f : αβ} {b : β} :
map f xs = replicate xs.size b ∀ (x : α), x xsf x = b
Equations
@[simp]
theorem Array.map_const {α : Type u_1} {β : Type u_2} {xs : Array α} {b : β} :
@[simp]
theorem Array.map_const_fun {β : Type u_1} {α : Type u_2} {x : β} :
map (Function.const α x) = fun (x_1 : Array α) => replicate x_1.size x
theorem Array.map_const' {α : Type u_1} {β : Type u_2} {xs : Array α} {b : β} :
map (fun (x : α) => b) xs = replicate xs.size b

Variant of map_const using a lambda rather than Function.const.

@[simp]
theorem Array.set_replicate_self {n : Nat} {α✝ : Type u_1} {a : α✝} {i : Nat} {h : i < (replicate n a).size} :
(replicate n a).set i a h = replicate n a
@[reducible, inline, deprecated Array.set_replicate_self (since := "2025-03-18")]
abbrev Array.set_mkArray_self {n : Nat} {α✝ : Type u_1} {a : α✝} {i : Nat} {h : i < (replicate n a).size} :
(replicate n a).set i a h = replicate n a
Equations
@[simp]
theorem Array.setIfInBounds_replicate_self {n : Nat} {α✝ : Type u_1} {a : α✝} {i : Nat} :
@[reducible, inline, deprecated Array.setIfInBounds_replicate_self (since := "2025-03-18")]
abbrev Array.setIfInBounds_mkArray_self {n : Nat} {α✝ : Type u_1} {a : α✝} {i : Nat} :
Equations
@[simp]
theorem Array.replicate_append_replicate {n : Nat} {α✝ : Type u_1} {a : α✝} {m : Nat} :
replicate n a ++ replicate m a = replicate (n + m) a
@[reducible, inline, deprecated Array.replicate_append_replicate (since := "2025-03-18")]
abbrev Array.mkArray_append_mkArray {n : Nat} {α✝ : Type u_1} {a : α✝} {m : Nat} :
replicate n a ++ replicate m a = replicate (n + m) a
Equations
theorem Array.append_eq_replicate_iff {α : Type u_1} {n : Nat} {xs ys : Array α} {a : α} :
xs ++ ys = replicate n a xs.size + ys.size = n xs = replicate xs.size a ys = replicate ys.size a
@[reducible, inline, deprecated Array.append_eq_replicate_iff (since := "2025-03-18")]
abbrev Array.append_eq_mkArray_iff {α : Type u_1} {n : Nat} {xs ys : Array α} {a : α} :
xs ++ ys = replicate n a xs.size + ys.size = n xs = replicate xs.size a ys = replicate ys.size a
Equations
theorem Array.replicate_eq_append_iff {α : Type u_1} {n : Nat} {xs ys : Array α} {a : α} :
replicate n a = xs ++ ys xs.size + ys.size = n xs = replicate xs.size a ys = replicate ys.size a
@[reducible, inline, deprecated Array.replicate_eq_append_iff (since := "2025-03-18")]
abbrev Array.replicate_eq_mkArray_iff {α : Type u_1} {n : Nat} {xs ys : Array α} {a : α} :
replicate n a = xs ++ ys xs.size + ys.size = n xs = replicate xs.size a ys = replicate ys.size a
Equations
@[simp]
theorem Array.map_replicate {n : Nat} {α✝ : Type u_1} {a : α✝} {α✝¹ : Type u_2} {f : α✝α✝¹} :
map f (replicate n a) = replicate n (f a)
@[reducible, inline, deprecated Array.map_replicate (since := "2025-03-18")]
abbrev Array.map_mkArray {n : Nat} {α✝ : Type u_1} {a : α✝} {α✝¹ : Type u_2} {f : α✝α✝¹} :
map f (replicate n a) = replicate n (f a)
Equations
theorem Array.filter_replicate {stop n : Nat} {α✝ : Type u_1} {a : α✝} {p : α✝Bool} (w : stop = n) :
filter p (replicate n a) 0 stop = if p a = true then replicate n a else #[]
@[reducible, inline, deprecated Array.filter_replicate (since := "2025-03-18")]
abbrev Array.filter_mkArray {stop n : Nat} {α✝ : Type u_1} {a : α✝} {p : α✝Bool} (w : stop = n) :
filter p (replicate n a) 0 stop = if p a = true then replicate n a else #[]
Equations
@[simp]
theorem Array.filter_replicate_of_pos {stop n : Nat} {α✝ : Type u_1} {p : α✝Bool} {a : α✝} (w : stop = n) (h : p a = true) :
filter p (replicate n a) 0 stop = replicate n a
@[reducible, inline, deprecated Array.filter_replicate_of_pos (since := "2025-03-18")]
abbrev Array.filter_mkArray_of_pos {stop n : Nat} {α✝ : Type u_1} {p : α✝Bool} {a : α✝} (w : stop = n) (h : p a = true) :
filter p (replicate n a) 0 stop = replicate n a
Equations
@[simp]
theorem Array.filter_replicate_of_neg {stop n : Nat} {α✝ : Type u_1} {p : α✝Bool} {a : α✝} (w : stop = n) (h : ¬p a = true) :
filter p (replicate n a) 0 stop = #[]
@[reducible, inline, deprecated Array.filter_replicate_of_neg (since := "2025-03-18")]
abbrev Array.filter_mkArray_of_neg {stop n : Nat} {α✝ : Type u_1} {p : α✝Bool} {a : α✝} (w : stop = n) (h : ¬p a = true) :
filter p (replicate n a) 0 stop = #[]
Equations
theorem Array.filterMap_replicate {α : Type u_1} {β : Type u_2} {stop n : Nat} {a : α} {f : αOption β} (w : stop = n := by simp) :
filterMap f (replicate n a) 0 stop = match f a with | none => #[] | some b => replicate n b
@[reducible, inline, deprecated Array.filterMap_replicate (since := "2025-03-18")]
abbrev Array.filterMap_mkArray {α : Type u_1} {β : Type u_2} {stop n : Nat} {a : α} {f : αOption β} (w : stop = n := by simp) :
filterMap f (replicate n a) 0 stop = match f a with | none => #[] | some b => replicate n b
Equations
theorem Array.filterMap_replicate_of_some {α : Type u_1} {β : Type u_2} {a : α} {b : β} {n : Nat} {f : αOption β} (h : f a = some b) :
@[reducible, inline, deprecated Array.filterMap_replicate_of_some (since := "2025-03-18")]
abbrev Array.filterMap_mkArray_of_some {α : Type u_1} {β : Type u_2} {a : α} {b : β} {n : Nat} {f : αOption β} (h : f a = some b) :
Equations
@[simp]
theorem Array.filterMap_replicate_of_isSome {α : Type u_1} {β : Type u_2} {a : α} {n : Nat} {f : αOption β} (h : (f a).isSome = true) :
filterMap f (replicate n a) = replicate n ((f a).get h)
@[reducible, inline, deprecated Array.filterMap_replicate_of_isSome (since := "2025-03-18")]
abbrev Array.filterMap_mkArray_of_isSome {α : Type u_1} {β : Type u_2} {a : α} {n : Nat} {f : αOption β} (h : (f a).isSome = true) :
filterMap f (replicate n a) = replicate n ((f a).get h)
Equations
@[simp]
theorem Array.filterMap_replicate_of_none {α : Type u_1} {β : Type u_2} {a : α} {n : Nat} {f : αOption β} (h : f a = none) :
@[reducible, inline, deprecated Array.filterMap_replicate_of_none (since := "2025-03-18")]
abbrev Array.filterMap_mkArray_of_none {α : Type u_1} {β : Type u_2} {a : α} {n : Nat} {f : αOption β} (h : f a = none) :
Equations
@[simp]
@[reducible, inline, deprecated Array.flatten_replicate_empty (since := "2025-03-18")]
Equations
@[simp]
theorem Array.flatten_replicate_singleton {n : Nat} {α✝ : Type u_1} {a : α✝} :
@[reducible, inline, deprecated Array.flatten_replicate_singleton (since := "2025-03-18")]
abbrev Array.flatten_mkArray_singleton {n : Nat} {α✝ : Type u_1} {a : α✝} :
Equations
@[simp]
theorem Array.flatten_replicate_replicate {n m : Nat} {α✝ : Type u_1} {a : α✝} :
@[reducible, inline, deprecated Array.flatten_replicate_replicate (since := "2025-03-18")]
abbrev Array.flatten_mkArray_replicate {n m : Nat} {α✝ : Type u_1} {a : α✝} :
Equations
theorem Array.flatMap_replicate {α : Type u_1} {β : Type u_2} {n : Nat} {a : α} {f : αArray β} :
flatMap f (replicate n a) = (replicate n (f a)).flatten
@[reducible, inline, deprecated Array.flatMap_replicate (since := "2025-03-18")]
abbrev Array.flatMap_mkArray {α : Type u_1} {β : Type u_2} {n : Nat} {a : α} {f : αArray β} :
flatMap f (replicate n a) = (replicate n (f a)).flatten
Equations
@[simp]
theorem Array.isEmpty_replicate {n : Nat} {α✝ : Type u_1} {a : α✝} :
(replicate n a).isEmpty = decide (n = 0)
@[reducible, inline, deprecated Array.isEmpty_replicate (since := "2025-03-18")]
abbrev Array.isEmpty_mkArray {n : Nat} {α✝ : Type u_1} {a : α✝} :
(replicate n a).isEmpty = decide (n = 0)
Equations
@[simp]
theorem Array.sum_replicate_nat {n a : Nat} :
(replicate n a).sum = n * a
@[reducible, inline, deprecated Array.sum_replicate_nat (since := "2025-03-18")]
abbrev Array.sum_mkArray_nat {n a : Nat} :
(replicate n a).sum = n * a
Equations

Preliminaries about swap needed for reverse. #

theorem Array.getElem?_swap {α : Type u_1} {xs : Array α} {i j : Nat} (hi : i < xs.size) (hj : j < xs.size) {k : Nat} :
(xs.swap i j hi hj)[k]? = if j = k then some xs[i] else if i = k then some xs[j] else xs[k]?

reverse #

@[simp]
theorem Array.size_reverse {α : Type u_1} {xs : Array α} :
@[irreducible]
theorem Array.size_reverse.go {α : Type u_1} (as : Array α) (i : Nat) (j : Fin as.size) :
(reverse.loop as i j).size = as.size
@[simp]
theorem Array.toList_reverse {α : Type u_1} {xs : Array α} :
@[irreducible]
theorem Array.toList_reverse.go {α : Type u_1} {xs : Array α} (as : Array α) (i j : Nat) (hj : j < as.size) (h : i + j + 1 = xs.size) (h₂ : as.size = xs.size) (H : ∀ (k : Nat), as.toList[k]? = if i k k j then xs.toList[k]? else xs.toList.reverse[k]?) (k : Nat) :
(reverse.loop as i j, hj).toList[k]? = xs.toList.reverse[k]?
@[simp]
theorem List.reverse_toArray {α : Type u_1} {l : List α} :
@[simp]
theorem Array.reverse_push {α : Type u_1} {xs : Array α} {a : α} :
(xs.push a).reverse = #[a] ++ xs.reverse
@[simp]
theorem Array.mem_reverse {α : Type u_1} {x : α} {xs : Array α} :
x xs.reverse x xs
@[simp]
theorem Array.getElem_reverse {α : Type u_1} {xs : Array α} {i : Nat} (hi : i < xs.reverse.size) :
xs.reverse[i] = xs[xs.size - 1 - i]
theorem Array.getElem_eq_getElem_reverse {α : Type u_1} {xs : Array α} {i : Nat} (h : i < xs.size) :
xs[i] = xs.reverse[xs.size - 1 - i]
@[simp]
theorem Array.reverse_eq_empty_iff {α : Type u_1} {xs : Array α} :
theorem Array.reverse_ne_empty_iff {α : Type u_1} {xs : Array α} :
@[simp]
theorem Array.isEmpty_reverse {α : Type u_1} {xs : Array α} :
theorem Array.getElem?_reverse' {α : Type u_1} {xs : Array α} {i j : Nat} (h : i + j + 1 = xs.size) :

Variant of getElem?_reverse with a hypothesis giving the linear relation between the indices.

@[simp]
theorem Array.getElem?_reverse {α : Type u_1} {xs : Array α} {i : Nat} (h : i < xs.size) :
xs.reverse[i]? = xs[xs.size - 1 - i]?
@[simp]
theorem Array.reverse_reverse {α : Type u_1} (xs : Array α) :
theorem Array.reverse_eq_iff {α : Type u_1} {xs ys : Array α} :
xs.reverse = ys xs = ys.reverse
@[simp]
theorem Array.reverse_inj {α : Type u_1} {xs ys : Array α} :
xs.reverse = ys.reverse xs = ys
@[simp]
theorem Array.reverse_eq_push_iff {α : Type u_1} {xs ys : Array α} {a : α} :
xs.reverse = ys.push a xs = #[a] ++ ys.reverse
@[simp]
theorem Array.map_reverse {α : Type u_1} {β : Type u_2} {f : αβ} {xs : Array α} :
map f xs.reverse = (map f xs).reverse
@[simp]
theorem Array.filter_reverse' {α : Type u_1} {p : αBool} {xs : Array α} {stop : Nat} (w : stop = xs.size) :
filter p xs.reverse 0 stop = (filter p xs).reverse

Variant of filter_reverse with a hypothesis giving the stop condition.

theorem Array.filter_reverse {α : Type u_1} {p : αBool} {xs : Array α} :
@[simp]
theorem Array.filterMap_reverse' {α : Type u_1} {β : Type u_2} {f : αOption β} {xs : Array α} {stop : Nat} (w : stop = xs.size) :
filterMap f xs.reverse 0 stop = (filterMap f xs).reverse

Variant of filterMap_reverse with a hypothesis giving the stop condition.

theorem Array.filterMap_reverse {α : Type u_1} {β : Type u_2} {f : αOption β} {xs : Array α} :
@[simp]
theorem Array.reverse_append {α : Type u_1} {xs ys : Array α} :
(xs ++ ys).reverse = ys.reverse ++ xs.reverse
@[simp]
theorem Array.reverse_eq_append_iff {α : Type u_1} {xs ys zs : Array α} :
xs.reverse = ys ++ zs xs = zs.reverse ++ ys.reverse
theorem Array.reverse_flatten {α : Type u_1} {xss : Array (Array α)} :

Reversing a flatten is the same as reversing the order of parts and reversing all parts.

theorem Array.flatten_reverse {α : Type u_1} {xss : Array (Array α)} :

Flattening a reverse is the same as reversing all parts and reversing the flattened result.

theorem Array.reverse_flatMap {α : Type u_1} {β : Type u_2} {xs : Array α} {f : αArray β} :
theorem Array.flatMap_reverse {α : Type u_1} {β : Type u_2} {xs : Array α} {f : αArray β} :
@[simp]
theorem Array.reverse_replicate {α : Type u_1} {n : Nat} {a : α} :
@[reducible, inline, deprecated Array.reverse_replicate (since := "2025-03-18")]
abbrev Array.reverse_mkArray {α : Type u_1} {n : Nat} {a : α} :
Equations

extract #

theorem Array.extract_loop_zero {α : Type u_1} {xs ys : Array α} {start : Nat} :
extract.loop xs 0 start ys = ys
theorem Array.extract_loop_succ {α : Type u_1} {xs ys : Array α} {size start : Nat} (h : start < xs.size) :
extract.loop xs (size + 1) start ys = extract.loop xs size (start + 1) (ys.push xs[start])
theorem Array.extract_loop_of_ge {α : Type u_1} {xs ys : Array α} {size start : Nat} (h : start xs.size) :
extract.loop xs size start ys = ys
theorem Array.extract_loop_eq_aux {α : Type u_1} {xs ys : Array α} {size start : Nat} :
extract.loop xs size start ys = ys ++ extract.loop xs size start #[]
theorem Array.extract_loop_eq {α : Type u_1} {xs ys : Array α} {size start : Nat} (h : start + size xs.size) :
extract.loop xs size start ys = ys ++ xs.extract start (start + size)
theorem Array.size_extract_loop {α : Type u_1} {xs ys : Array α} {size start : Nat} :
(extract.loop xs size start ys).size = ys.size + min size (xs.size - start)
@[simp]
theorem Array.size_extract {α : Type u_1} {xs : Array α} {start stop : Nat} :
(xs.extract start stop).size = min stop xs.size - start
theorem Array.getElem_extract_loop_lt_aux {α : Type u_1} {i : Nat} {xs ys : Array α} {size start : Nat} (hlt : i < ys.size) :
i < (extract.loop xs size start ys).size
theorem Array.getElem_extract_loop_lt {α : Type u_1} {i : Nat} {xs ys : Array α} {size start : Nat} (hlt : i < ys.size) (h : i < (extract.loop xs size start ys).size := ) :
(extract.loop xs size start ys)[i] = ys[i]
theorem Array.getElem_extract_loop_ge_aux {α : Type u_1} {i : Nat} {xs ys : Array α} {size start : Nat} (hge : i ys.size) (h : i < (extract.loop xs size start ys).size) :
start + i - ys.size < xs.size
theorem Array.getElem_extract_loop_ge {α : Type u_1} {i : Nat} {xs ys : Array α} {size start : Nat} (hge : i ys.size) (h : i < (extract.loop xs size start ys).size) (h' : start + i - ys.size < xs.size := ) :
(extract.loop xs size start ys)[i] = xs[start + i - ys.size]
theorem Array.getElem_extract_aux {α : Type u_1} {i : Nat} {xs : Array α} {start stop : Nat} (h : i < (xs.extract start stop).size) :
start + i < xs.size
@[simp]
theorem Array.getElem_extract {α : Type u_1} {i : Nat} {xs : Array α} {start stop : Nat} (h : i < (xs.extract start stop).size) :
(xs.extract start stop)[i] = xs[start + i]
theorem Array.getElem?_extract {α : Type u_1} {i : Nat} {xs : Array α} {start stop : Nat} :
(xs.extract start stop)[i]? = if i < min stop xs.size - start then xs[start + i]? else none
theorem Array.extract_congr {α : Type u_1} {start start' stop stop' : Nat} {xs ys : Array α} (w : xs = ys) (h : start = start') (h' : stop = stop') :
xs.extract start stop = ys.extract start' stop'
@[simp]
theorem Array.toList_extract {α : Type u_1} {xs : Array α} {start stop : Nat} :
(xs.extract start stop).toList = xs.toList.extract start stop
@[simp]
theorem Array.extract_size {α : Type u_1} {xs : Array α} :
xs.extract = xs
@[reducible, inline, deprecated Array.extract_size (since := "2025-01-19")]
abbrev Array.extract_all {α : Type u_1} {xs : Array α} :
xs.extract = xs
Equations
theorem Array.extract_empty_of_stop_le_start {α : Type u_1} {xs : Array α} {start stop : Nat} (h : stop start) :
xs.extract start stop = #[]
theorem Array.extract_empty_of_size_le_start {α : Type u_1} {xs : Array α} {start stop : Nat} (h : xs.size start) :
xs.extract start stop = #[]
@[simp]
theorem Array.extract_empty {α : Type u_1} {start stop : Nat} :
#[].extract start stop = #[]
@[simp]
theorem List.extract_toArray {α : Type u_1} {l : List α} {start stop : Nat} :
l.toArray.extract start stop = (l.extract start stop).toArray
@[deprecated Array.extract_size (since := "2025-02-27")]
theorem Array.take_size {α : Type u_1} {xs : Array α} :
xs.take xs.size = xs

shrink #

@[simp]
theorem Array.size_shrink_loop {α : Type u_1} {xs : Array α} {n : Nat} :
(shrink.loop n xs).size = xs.size - n
@[simp]
theorem Array.getElem_shrink_loop {α : Type u_1} {xs : Array α} {n i : Nat} (h : i < (shrink.loop n xs).size) :
(shrink.loop n xs)[i] = xs[i]
@[simp]
theorem Array.size_shrink {α : Type u_1} {xs : Array α} {i : Nat} :
(xs.shrink i).size = min i xs.size
@[simp]
theorem Array.getElem_shrink {α : Type u_1} {xs : Array α} {i j : Nat} (h : j < (xs.shrink i).size) :
(xs.shrink i)[j] = xs[j]
@[simp]
theorem Array.toList_shrink {α : Type u_1} {xs : Array α} {i : Nat} :
@[simp]
theorem Array.shrink_eq_take {α : Type u_1} {xs : Array α} {i : Nat} :
xs.shrink i = xs.take i

foldlM and foldrM #

theorem Array.foldlM_start_stop {α : Type u_1} {β : Type u_2} {m : Type u_2 → Type u_3} [Monad m] {xs : Array α} {f : βαm β} {b : β} {start stop : Nat} :
foldlM f b xs start stop = foldlM f b (xs.extract start stop)
theorem Array.foldrM_start_stop {α : Type u_1} {β : Type u_2} {m : Type u_2 → Type u_3} [Monad m] {xs : Array α} {f : αβm β} {b : β} {start stop : Nat} :
foldrM f b xs start stop = foldrM f b (xs.extract stop start)
theorem Array.foldlM_congr {β : Type u_1} {α : Type u_2} {start start' stop stop' : Nat} {m : Type u_1 → Type u_3} [Monad m] {f g : βαm β} {b : β} {xs xs' : Array α} (w : xs = xs') (h : ∀ (x : β) (y : α), f x y = g x y) (hstart : start = start') (hstop : stop = stop') :
foldlM f b xs start stop = foldlM g b xs' start' stop'
theorem Array.foldrM_congr {α : Type u_1} {β : Type u_2} {start start' stop stop' : Nat} {m : Type u_2 → Type u_3} [Monad m] {f g : αβm β} {b : β} {xs xs' : Array α} (w : xs = xs') (h : ∀ (x : α) (y : β), f x y = g x y) (hstart : start = start') (hstop : stop = stop') :
foldrM f b xs start stop = foldrM g b xs' start' stop'
@[simp]
theorem Array.foldlM_append' {m : Type u_1 → Type u_2} {β : Type u_1} {α : Type u_3} [Monad m] [LawfulMonad m] {f : βαm β} {b : β} {xs xs' : Array α} {stop : Nat} (w : stop = xs.size + xs'.size) :
foldlM f b (xs ++ xs') 0 stop = do let initfoldlM f b xs foldlM f init xs'

Variant of foldlM_append with a side condition for the stop argument.

theorem Array.foldlM_append {m : Type u_1 → Type u_2} {β : Type u_1} {α : Type u_3} [Monad m] [LawfulMonad m] {f : βαm β} {b : β} {xs xs' : Array α} :
foldlM f b (xs ++ xs') = do let initfoldlM f b xs foldlM f init xs'
@[simp]
theorem Array.foldlM_loop_empty {m : Type u_1 → Type u_2} {β : Type u_1} {α : Type u_3} {s : Nat} {h : s #[].size} [Monad m] {f : βαm β} {init : β} {i j : Nat} :
foldlM.loop f #[] s h i j init = pure init
@[simp]
theorem Array.foldlM_empty {m : Type u_1 → Type u_2} {β : Type u_1} {α : Type u_3} {start stop : Nat} [Monad m] {f : βαm β} {init : β} :
foldlM f init #[] start stop = pure init
@[simp]
theorem Array.foldrM_fold_empty {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} [Monad m] {f : αβm β} {init : β} {i j : Nat} (h : j #[].size) :
foldrM.fold f #[] i j h init = pure init
@[simp]
theorem Array.foldrM_empty {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} [Monad m] {f : αβm β} {init : β} {start stop : Nat} :
foldrM f init #[] start stop = pure init
@[simp]
theorem Array.foldlM_push' {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} [Monad m] [LawfulMonad m] {xs : Array α} {a : α} {f : βαm β} {b : β} {stop : Nat} (w : stop = xs.size + 1) :
foldlM f b (xs.push a) 0 stop = do let bfoldlM f b xs f b a

Variant of foldlM_push with a side condition for the stop argument.

theorem Array.foldlM_push {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} [Monad m] [LawfulMonad m] {xs : Array α} {a : α} {f : βαm β} {b : β} :
foldlM f b (xs.push a) = do let bfoldlM f b xs f b a
@[simp]
theorem Array.foldlM_pure {m : Type u_1 → Type u_2} {β : Type u_1} {α : Type u_3} [Monad m] [LawfulMonad m] {f : βαβ} {b : β} {xs : Array α} {start stop : Nat} :
foldlM (fun (x1 : β) (x2 : α) => pure (f x1 x2)) b xs start stop = pure (foldl f b xs start stop)
@[simp]
theorem Array.foldrM_pure {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} [Monad m] [LawfulMonad m] {f : αββ} {b : β} {xs : Array α} {start stop : Nat} :
foldrM (fun (x1 : α) (x2 : β) => pure (f x1 x2)) b xs start stop = pure (foldr f b xs start stop)
theorem Array.foldl_eq_foldlM {β : Type u_1} {α : Type u_2} {f : βαβ} {b : β} {xs : Array α} {start stop : Nat} :
foldl f b xs start stop = foldlM f b xs start stop
theorem Array.foldr_eq_foldrM {α : Type u_1} {β : Type u_2} {f : αββ} {b : β} {xs : Array α} {start stop : Nat} :
foldr f b xs start stop = foldrM f b xs start stop
@[simp]
theorem Array.id_run_foldlM {β : Type u_1} {α : Type u_2} {f : βαId β} {b : β} {xs : Array α} {start stop : Nat} :
(foldlM f b xs start stop).run = foldl f b xs start stop
@[simp]
theorem Array.id_run_foldrM {α : Type u_1} {β : Type u_2} {f : αβId β} {b : β} {xs : Array α} {start stop : Nat} :
(foldrM f b xs start stop).run = foldr f b xs start stop
@[simp]
theorem Array.foldlM_reverse' {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} [Monad m] {xs : Array α} {f : βαm β} {b : β} {stop : Nat} (w : stop = xs.size) :
foldlM f b xs.reverse 0 stop = foldrM (fun (x : α) (y : β) => f y x) b xs

Variant of foldlM_reverse with a side condition for the stop argument.

@[simp]
theorem Array.foldrM_reverse' {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} [Monad m] {xs : Array α} {f : αβm β} {b : β} {start : Nat} (w : start = xs.size) :
foldrM f b xs.reverse start = foldlM (fun (x : β) (y : α) => f y x) b xs

Variant of foldrM_reverse with a side condition for the start argument.

theorem Array.foldlM_reverse {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} [Monad m] {xs : Array α} {f : βαm β} {b : β} :
foldlM f b xs.reverse = foldrM (fun (x : α) (y : β) => f y x) b xs
theorem Array.foldrM_reverse {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} [Monad m] {xs : Array α} {f : αβm β} {b : β} :
foldrM f b xs.reverse = foldlM (fun (x : β) (y : α) => f y x) b xs
theorem Array.foldrM_push {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} [Monad m] {f : αβm β} {init : β} {xs : Array α} {a : α} :
foldrM f init (xs.push a) = do let initf a init foldrM f init xs
@[simp]
theorem Array.foldrM_push' {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} [Monad m] {f : αβm β} {init : β} {xs : Array α} {a : α} {start : Nat} (h : start = xs.size + 1) :
foldrM f init (xs.push a) start = do let initf a init foldrM f init xs

Variant of foldrM_push with h : start = arr.size + 1 rather than (arr.push a).size as the argument.

foldl / foldr #

theorem Array.foldl_induction {α : Type u_1} {β : Type u_2} {as : Array α} (motive : NatβProp) {init : β} (h0 : motive 0 init) {f : βαβ} (hf : ∀ (i : Fin as.size) (b : β), motive (↑i) bmotive (i + 1) (f b as[i])) :
motive as.size (foldl f init as)
@[irreducible]
theorem Array.foldl_induction.go {α : Type u_1} {β : Type u_2} {as : Array α} (motive : NatβProp) {f : βαβ} (hf : ∀ (i : Fin as.size) (b : β), motive (↑i) bmotive (i + 1) (f b as[i])) {i j : Nat} {b : β} (h₁ : j as.size) (h₂ : as.size i + j) (H : motive j b) :
motive as.size (foldlM.loop f as as.size i j b)
theorem Array.foldr_induction {α : Type u_1} {β : Type u_2} {as : Array α} (motive : NatβProp) {init : β} (h0 : motive as.size init) {f : αββ} (hf : ∀ (i : Fin as.size) (b : β), motive (i + 1) bmotive (↑i) (f as[i] b)) :
motive 0 (foldr f init as)
@[irreducible]
theorem Array.foldr_induction.go {α : Type u_1} {β : Type u_2} {as : Array α} (motive : NatβProp) {f : αββ} (hf : ∀ (i : Fin as.size) (b : β), motive (i + 1) bmotive (↑i) (f as[i] b)) {i : Nat} {b : β} (hi : i as.size) (H : motive i b) :
motive 0 (foldrM.fold f as 0 i hi b)
theorem Array.foldl_congr {α : Type u_1} {β : Type u_2} {as bs : Array α} (h₀ : as = bs) {f g : βαβ} (h₁ : f = g) {a b : β} (h₂ : a = b) {start start' stop stop' : Nat} (h₃ : start = start') (h₄ : stop = stop') :
foldl f a as start stop = foldl g b bs start' stop'
theorem Array.foldr_congr {α : Type u_1} {β : Type u_2} {as bs : Array α} (h₀ : as = bs) {f g : αββ} (h₁ : f = g) {a b : β} (h₂ : a = b) {start start' stop stop' : Nat} (h₃ : start = start') (h₄ : stop = stop') :
foldr f a as start stop = foldr g b bs start' stop'
theorem Array.foldr_push {α : Type u_1} {β : Type u_2} {f : αββ} {init : β} {xs : Array α} {a : α} :
foldr f init (xs.push a) = foldr f (f a init) xs
@[simp]
theorem Array.foldr_push' {α : Type u_1} {β : Type u_2} {f : αββ} {init : β} {xs : Array α} {a : α} {start : Nat} (h : start = xs.size + 1) :
foldr f init (xs.push a) start = foldr f (f a init) xs

Variant of foldr_push with the h : start = arr.size + 1 rather than (arr.push a).size as the argument.

@[simp]
theorem Array.foldl_push_eq_append {α : Type u_1} {β : Type u_2} {stop : Nat} {as : Array α} {bs : Array β} {f : αβ} (w : stop = as.size) :
foldl (fun (acc : Array β) (a : α) => acc.push (f a)) bs as 0 stop = bs ++ map f as
@[simp]
theorem Array.foldl_cons_eq_append {α : Type u_1} {β : Type u_2} {stop : Nat} {as : Array α} {bs : List β} {f : αβ} (w : stop = as.size) :
foldl (fun (acc : List β) (a : α) => f a :: acc) bs as 0 stop = (map f as).reverse.toList ++ bs
@[simp]
theorem Array.foldr_cons_eq_append {α : Type u_1} {β : Type u_2} {start : Nat} {as : Array α} {bs : List β} {f : αβ} (w : start = as.size) :
foldr (fun (a : α) (acc : List β) => f a :: acc) bs as start = (map f as).toList ++ bs
@[simp]
theorem Array.foldr_cons_eq_append' {α : Type u_1} {start : Nat} {as : Array α} {bs : List α} (w : start = as.size) :
foldr List.cons bs as start = as.toList ++ bs

Variant of foldr_cons_eq_append specialized to f = id.

@[simp]
theorem Array.foldr_append_eq_append {α : Type u_1} {β : Type u_2} {xs : Array α} {f : αArray β} {ys : Array β} :
foldr (fun (x1 : α) (x2 : Array β) => f x1 ++ x2) ys xs = (map f xs).flatten ++ ys
@[simp]
theorem Array.foldl_append_eq_append {α : Type u_1} {β : Type u_2} {xs : Array α} {f : αArray β} {ys : Array β} :
foldl (fun (x1 : Array β) (x2 : α) => x1 ++ f x2) ys xs = ys ++ (map f xs).flatten
@[simp]
theorem Array.foldr_flip_append_eq_append {α : Type u_1} {β : Type u_2} {xs : Array α} {f : αArray β} {ys : Array β} :
foldr (fun (x : α) (acc : Array β) => acc ++ f x) ys xs = ys ++ (map f xs).reverse.flatten
@[simp]
theorem Array.foldl_flip_append_eq_append {α : Type u_1} {β : Type u_2} {xs : Array α} {f : αArray β} {ys : Array β} :
foldl (fun (acc : Array β) (y : α) => f y ++ acc) ys xs = (map f xs).reverse.flatten ++ ys
theorem Array.foldl_map' {β₁ : Type u_1} {β₂ : Type u_2} {α : Type u_3} {f : β₁β₂} {g : αβ₂α} {xs : Array β₁} {init : α} {stop : Nat} (w : stop = xs.size) :
foldl g init (map f xs) 0 stop = foldl (fun (x : α) (y : β₁) => g x (f y)) init xs
theorem Array.foldr_map' {α₁ : Type u_1} {α₂ : Type u_2} {β : Type u_3} {f : α₁α₂} {g : α₂ββ} {xs : Array α₁} {init : β} {start : Nat} (w : start = xs.size) :
foldr g init (map f xs) start = foldr (fun (x : α₁) (y : β) => g (f x) y) init xs
theorem Array.foldl_map {β₁ : Type u_1} {β₂ : Type u_2} {α : Type u_3} {f : β₁β₂} {g : αβ₂α} {xs : Array β₁} {init : α} :
foldl g init (map f xs) = foldl (fun (x : α) (y : β₁) => g x (f y)) init xs
theorem Array.foldr_map {α₁ : Type u_1} {α₂ : Type u_2} {β : Type u_3} {f : α₁α₂} {g : α₂ββ} {xs : Array α₁} {init : β} :
foldr g init (map f xs) = foldr (fun (x : α₁) (y : β) => g (f x) y) init xs
theorem Array.foldl_filterMap' {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f : αOption β} {g : γβγ} {xs : Array α} {init : γ} {stop : Nat} (w : stop = (filterMap f xs).size) :
foldl g init (filterMap f xs) 0 stop = foldl (fun (x : γ) (y : α) => match f y with | some b => g x b | none => x) init xs
theorem Array.foldr_filterMap' {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f : αOption β} {g : βγγ} {xs : Array α} {init : γ} {start : Nat} (w : start = (filterMap f xs).size) :
foldr g init (filterMap f xs) start = foldr (fun (x : α) (y : γ) => match f x with | some b => g b y | none => y) init xs
theorem Array.foldl_filterMap {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f : αOption β} {g : γβγ} {xs : Array α} {init : γ} :
foldl g init (filterMap f xs) = foldl (fun (x : γ) (y : α) => match f y with | some b => g x b | none => x) init xs
theorem Array.foldr_filterMap {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f : αOption β} {g : βγγ} {xs : Array α} {init : γ} :
foldr g init (filterMap f xs) = foldr (fun (x : α) (y : γ) => match f x with | some b => g b y | none => y) init xs
theorem Array.foldl_map_hom' {α : Type u_1} {β : Type u_2} {g : αβ} {f : ααα} {f' : βββ} {a : α} {xs : Array α} {stop : Nat} (h : ∀ (x y : α), f' (g x) (g y) = g (f x y)) (w : stop = xs.size) :
foldl f' (g a) (map g xs) 0 stop = g (foldl f a xs)
theorem Array.foldr_map_hom' {α : Type u_1} {β : Type u_2} {g : αβ} {f : ααα} {f' : βββ} {a : α} {xs : Array α} {start : Nat} (h : ∀ (x y : α), f' (g x) (g y) = g (f x y)) (w : start = xs.size) :
foldr f' (g a) (map g xs) start = g (foldr f a xs)
theorem Array.foldl_map_hom {α : Type u_1} {β : Type u_2} {g : αβ} {f : ααα} {f' : βββ} {a : α} {xs : Array α} (h : ∀ (x y : α), f' (g x) (g y) = g (f x y)) :
foldl f' (g a) (map g xs) = g (foldl f a xs)
theorem Array.foldr_map_hom {α : Type u_1} {β : Type u_2} {g : αβ} {f : ααα} {f' : βββ} {a : α} {xs : Array α} (h : ∀ (x y : α), f' (g x) (g y) = g (f x y)) :
foldr f' (g a) (map g xs) = g (foldr f a xs)
@[simp]
theorem Array.foldrM_append' {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} [Monad m] [LawfulMonad m] {f : αβm β} {b : β} {xs ys : Array α} {start : Nat} (w : start = xs.size + ys.size) :
foldrM f b (xs ++ ys) start = do let initfoldrM f b ys foldrM f init xs

Variant of foldrM_append with a side condition for the start argument.

theorem Array.foldrM_append {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} [Monad m] [LawfulMonad m] {f : αβm β} {b : β} {xs ys : Array α} :
foldrM f b (xs ++ ys) = do let initfoldrM f b ys foldrM f init xs
@[simp]
theorem Array.foldl_append' {α : Type u_1} {β : Type u_2} {f : βαβ} {b : β} {xs ys : Array α} {stop : Nat} (w : stop = xs.size + ys.size) :
foldl f b (xs ++ ys) 0 stop = foldl f (foldl f b xs) ys
@[simp]
theorem Array.foldr_append' {α : Type u_1} {β : Type u_2} {f : αββ} {b : β} {xs ys : Array α} {start : Nat} (w : start = xs.size + ys.size) :
foldr f b (xs ++ ys) start = foldr f (foldr f b ys) xs
theorem Array.foldl_append {α : Type u_1} {β : Type u_2} {f : βαβ} {b : β} {xs ys : Array α} :
foldl f b (xs ++ ys) = foldl f (foldl f b xs) ys
theorem Array.foldr_append {α : Type u_1} {β : Type u_2} {f : αββ} {b : β} {xs ys : Array α} :
foldr f b (xs ++ ys) = foldr f (foldr f b ys) xs
@[simp]
theorem Array.foldl_flatten' {β : Type u_1} {α : Type u_2} {f : βαβ} {b : β} {xss : Array (Array α)} {stop : Nat} (w : stop = xss.flatten.size) :
foldl f b xss.flatten 0 stop = foldl (fun (b : β) (xs : Array α) => foldl f b xs) b xss
@[simp]
theorem Array.foldr_flatten' {α : Type u_1} {β : Type u_2} {f : αββ} {b : β} {xss : Array (Array α)} {start : Nat} (w : start = xss.flatten.size) :
foldr f b xss.flatten start = foldr (fun (xs : Array α) (b : β) => foldr f b xs) b xss
theorem Array.foldl_flatten {β : Type u_1} {α : Type u_2} {f : βαβ} {b : β} {xss : Array (Array α)} :
foldl f b xss.flatten = foldl (fun (b : β) (xs : Array α) => foldl f b xs) b xss
theorem Array.foldr_flatten {α : Type u_1} {β : Type u_2} {f : αββ} {b : β} {xss : Array (Array α)} :
foldr f b xss.flatten = foldr (fun (xs : Array α) (b : β) => foldr f b xs) b xss
@[simp]
theorem Array.foldl_reverse' {α : Type u_1} {β : Type u_2} {xs : Array α} {f : βαβ} {b : β} {stop : Nat} (w : stop = xs.size) :
foldl f b xs.reverse 0 stop = foldr (fun (x : α) (y : β) => f y x) b xs

Variant of foldl_reverse with a side condition for the stop argument.

@[simp]
theorem Array.foldr_reverse' {α : Type u_1} {β : Type u_2} {xs : Array α} {f : αββ} {b : β} {start : Nat} (w : start = xs.size) :
foldr f b xs.reverse start = foldl (fun (x : β) (y : α) => f y x) b xs

Variant of foldr_reverse with a side condition for the start argument.

theorem Array.foldl_reverse {α : Type u_1} {β : Type u_2} {xs : Array α} {f : βαβ} {b : β} :
foldl f b xs.reverse = foldr (fun (x : α) (y : β) => f y x) b xs
theorem Array.foldr_reverse {α : Type u_1} {β : Type u_2} {xs : Array α} {f : αββ} {b : β} :
foldr f b xs.reverse = foldl (fun (x : β) (y : α) => f y x) b xs
theorem Array.foldl_eq_foldr_reverse {α : Type u_1} {β : Type u_2} {xs : Array α} {f : βαβ} {b : β} :
foldl f b xs = foldr (fun (x : α) (y : β) => f y x) b xs.reverse
theorem Array.foldr_eq_foldl_reverse {α : Type u_1} {β : Type u_2} {xs : Array α} {f : αββ} {b : β} :
foldr f b xs = foldl (fun (x : β) (y : α) => f y x) b xs.reverse
@[simp]
theorem Array.foldr_push_eq_append {α : Type u_1} {β : Type u_2} {start : Nat} {as : Array α} {bs : Array β} {f : αβ} (w : start = as.size) :
foldr (fun (a : α) (xs : Array β) => xs.push (f a)) bs as start = bs ++ (map f as).reverse
@[reducible, inline, deprecated Array.foldr_push_eq_append (since := "2025-02-09")]
abbrev Array.foldr_flip_push_eq_append {α : Type u_1} {β : Type u_2} {start : Nat} {as : Array α} {bs : Array β} {f : αβ} (w : start = as.size) :
foldr (fun (a : α) (xs : Array β) => xs.push (f a)) bs as start = bs ++ (map f as).reverse
Equations
theorem Array.foldl_assoc {α : Type u_1} {op : ααα} [ha : Std.Associative op] {xs : Array α} {a₁ a₂ : α} :
foldl op (op a₁ a₂) xs = op a₁ (foldl op a₂ xs)
theorem Array.foldr_assoc {α : Type u_1} {op : ααα} [ha : Std.Associative op] {xs : Array α} {a₁ a₂ : α} :
foldr op (op a₁ a₂) xs = op (foldr op a₁ xs) a₂
theorem Array.foldl_hom {α₁ : Type u_1} {α₂ : Type u_2} {β : Type u_3} (f : α₁α₂) {g₁ : α₁βα₁} {g₂ : α₂βα₂} {xs : Array β} {init : α₁} (H : ∀ (x : α₁) (y : β), g₂ (f x) y = f (g₁ x y)) :
foldl g₂ (f init) xs = f (foldl g₁ init xs)
theorem Array.foldr_hom {β₁ : Type u_1} {β₂ : Type u_2} {α : Type u_3} (f : β₁β₂) {g₁ : αβ₁β₁} {g₂ : αβ₂β₂} {xs : Array α} {init : β₁} (H : ∀ (x : α) (y : β₁), g₂ x (f y) = f (g₁ x y)) :
foldr g₂ (f init) xs = f (foldr g₁ init xs)
theorem Array.foldl_rel {α : Type u_1} {β : Type u_2} {xs : Array α} {f g : βαβ} {a b : β} {r : ββProp} (h : r a b) (h' : ∀ (a : α), a xs∀ (c c' : β), r c c'r (f c a) (g c' a)) :
r (foldl (fun (acc : β) (a : α) => f acc a) a xs) (foldl (fun (acc : β) (a : α) => g acc a) b xs)

We can prove that two folds over the same array are related (by some arbitrary relation) if we know that the initial elements are related and the folding function, for each element of the array, preserves the relation.

theorem Array.foldr_rel {α : Type u_1} {β : Type u_2} {xs : Array α} {f g : αββ} {a b : β} {r : ββProp} (h : r a b) (h' : ∀ (a : α), a xs∀ (c c' : β), r c c'r (f a c) (g a c')) :
r (foldr (fun (a : α) (acc : β) => f a acc) a xs) (foldr (fun (a : α) (acc : β) => g a acc) b xs)

We can prove that two folds over the same array are related (by some arbitrary relation) if we know that the initial elements are related and the folding function, for each element of the array, preserves the relation.

@[simp]
theorem Array.foldl_add_const {α : Type u_1} {xs : Array α} {a b : Nat} :
foldl (fun (x : Nat) (x_1 : α) => x + a) b xs = b + a * xs.size
@[simp]
theorem Array.foldr_add_const {α : Type u_1} {xs : Array α} {a b : Nat} :
foldr (fun (x : α) (x : Nat) => x + a) b xs = b + a * xs.size

Further results about back and back? #

@[simp]
theorem Array.back?_eq_none_iff {α : Type u_1} {xs : Array α} :
theorem Array.back?_eq_some_iff {α : Type u_1} {xs : Array α} {a : α} :
xs.back? = some a (ys : Array α), xs = ys.push a
@[simp]
theorem Array.back?_isSome {α✝ : Type u_1} {xs : Array α✝} :
theorem Array.mem_of_back? {α : Type u_1} {xs : Array α} {a : α} (h : xs.back? = some a) :
a xs
@[simp]
theorem Array.back_append_of_size_pos {α : Type u_1} {xs ys : Array α} {h₁ : 0 < (xs ++ ys).size} (h₂ : 0 < ys.size) :
(xs ++ ys).back h₁ = ys.back h₂
theorem Array.back_append {α : Type u_1} {ys xs : Array α} (h : 0 < (xs ++ ys).size) :
(xs ++ ys).back h = if h' : ys.isEmpty = true then xs.back else ys.back
theorem Array.back_append_right {α : Type u_1} {xs ys : Array α} (h : 0 < ys.size) :
(xs ++ ys).back = ys.back h
theorem Array.back_append_left {α : Type u_1} {xs ys : Array α} (w : 0 < (xs ++ ys).size) (h : ys.size = 0) :
(xs ++ ys).back w = xs.back
@[simp]
theorem Array.back?_append {α : Type u_1} {xs ys : Array α} :
(xs ++ ys).back? = ys.back?.or xs.back?
theorem Array.back_filter_of_pos {α : Type u_1} {p : αBool} {xs : Array α} (w : 0 < xs.size) (h : p (xs.back w) = true) :
(filter p xs).back = xs.back w
theorem Array.back_filterMap_of_eq_some {α : Type u_1} {β : Type u_2} {f : αOption β} {xs : Array α} {w : 0 < xs.size} {b : β} (h : f (xs.back w) = some b) :
some ((filterMap f xs).back ) = some b
theorem Array.back?_flatMap {α : Type u_1} {β : Type u_2} {xs : Array α} {f : αArray β} :
(flatMap f xs).back? = findSome? (fun (a : α) => (f a).back?) xs.reverse
theorem Array.back?_flatten {α : Type u_1} {xss : Array (Array α)} :
xss.flatten.back? = findSome? (fun (xs : Array α) => xs.back?) xss.reverse
theorem Array.back?_replicate {α : Type u_1} {a : α} {n : Nat} :
@[reducible, inline, deprecated Array.back?_replicate (since := "2025-03-18")]
abbrev Array.back?_mkArray {α : Type u_1} {a : α} {n : Nat} :
Equations
@[simp]
theorem Array.back_replicate {n : Nat} {α✝ : Type u_1} {a : α✝} (w : 0 < n) :
(replicate n a).back = a
@[reducible, inline, deprecated Array.back_replicate (since := "2025-03-18")]
abbrev Array.back_mkArray {n : Nat} {α✝ : Type u_1} {a : α✝} (w : 0 < n) :
(replicate n a).back = a
Equations

Additional operations #

leftpad #

theorem Array.size_leftpad {α : Type u_1} {n : Nat} {a : α} {xs : Array α} :
(leftpad n a xs).size = max n xs.size
theorem Array.size_rightpad {α : Type u_1} {n : Nat} {a : α} {xs : Array α} :
(rightpad n a xs).size = max n xs.size

contains #

theorem Array.elem_cons_self {α : Type u_1} [BEq α] [LawfulBEq α] {xs : Array α} {a : α} :
elem a (xs.push a) = true
theorem Array.contains_eq_any_beq {α : Type u_1} [BEq α] {xs : Array α} {a : α} :
xs.contains a = xs.any fun (x : α) => a == x
theorem Array.contains_iff_exists_mem_beq {α : Type u_1} [BEq α] {xs : Array α} {a : α} :
xs.contains a = true (a' : α), a' xs (a == a') = true
theorem Array.contains_iff_mem {α : Type u_1} [BEq α] [LawfulBEq α] {xs : Array α} {a : α} :
xs.contains a = true a xs

more lemmas about pop #

theorem Array.pop_append {α : Type u_1} {xs ys : Array α} :
(xs ++ ys).pop = if ys.isEmpty = true then xs.pop else xs ++ ys.pop
@[simp]
theorem Array.pop_replicate {α : Type u_1} {n : Nat} {a : α} :
(replicate n a).pop = replicate (n - 1) a
@[reducible, inline, deprecated Array.pop_replicate (since := "2025-03-18")]
abbrev Array.pop_mkArray {α : Type u_1} {n : Nat} {a : α} :
(replicate n a).pop = replicate (n - 1) a
Equations

modify #

@[simp]
theorem Array.size_modify {α : Type u_1} {xs : Array α} {i : Nat} {f : αα} :
(xs.modify i f).size = xs.size
theorem Array.getElem_modify {α : Type u_1} {f : αα} {xs : Array α} {j i : Nat} (h : i < (xs.modify j f).size) :
(xs.modify j f)[i] = if j = i then f xs[i] else xs[i]
@[simp]
theorem Array.toList_modify {α : Type u_1} {xs : Array α} {f : αα} {i : Nat} :
(xs.modify i f).toList = xs.toList.modify i f
theorem Array.getElem_modify_self {α : Type u_1} {xs : Array α} {i : Nat} (f : αα) (h : i < (xs.modify i f).size) :
(xs.modify i f)[i] = f xs[i]
theorem Array.getElem_modify_of_ne {α : Type u_1} {j : Nat} {xs : Array α} {i : Nat} (h : i j) (f : αα) (hj : j < (xs.modify i f).size) :
(xs.modify i f)[j] = xs[j]
theorem Array.getElem?_modify {α : Type u_1} {xs : Array α} {i : Nat} {f : αα} {j : Nat} :
(xs.modify i f)[j]? = if i = j then Option.map f xs[j]? else xs[j]?

swap #

@[simp]
theorem Array.getElem_swap_right {α : Type u_1} {xs : Array α} {i j : Nat} {hi : i < xs.size} {hj : j < xs.size} :
(xs.swap i j hi hj)[j] = xs[i]
@[simp]
theorem Array.getElem_swap_left {α : Type u_1} {xs : Array α} {i j : Nat} {hi : i < xs.size} {hj : j < xs.size} :
(xs.swap i j hi hj)[i] = xs[j]
@[simp]
theorem Array.getElem_swap_of_ne {α : Type u_1} {k : Nat} {xs : Array α} {i j : Nat} {hi : i < xs.size} {hj : j < xs.size} (hp : k < xs.size) (hi' : k i) (hj' : k j) :
(xs.swap i j hi hj)[k] = xs[k]
theorem Array.getElem_swap' {α : Type u_1} {xs : Array α} {i j : Nat} {hi : i < xs.size} {hj : j < xs.size} {k : Nat} (hk : k < xs.size) :
(xs.swap i j hi hj)[k] = if k = i then xs[j] else if k = j then xs[i] else xs[k]
theorem Array.getElem_swap {α : Type u_1} {xs : Array α} {i j : Nat} (hi : i < xs.size) (hj : j < xs.size) {k : Nat} (hk : k < (xs.swap i j hi hj).size) :
(xs.swap i j hi hj)[k] = if k = i then xs[j] else if k = j then xs[i] else xs[k]
@[simp]
theorem Array.swap_swap {α : Type u_1} {xs : Array α} {i j : Nat} (hi : i < xs.size) (hj : j < xs.size) :
(xs.swap i j hi hj).swap i j = xs
theorem Array.swap_comm {α : Type u_1} {xs : Array α} {i j : Nat} (hi : i < xs.size) (hj : j < xs.size) :
xs.swap i j hi hj = xs.swap j i hj hi
@[simp]
theorem Array.size_swapIfInBounds {α : Type u_1} {xs : Array α} {i j : Nat} :
@[reducible, inline, deprecated Array.size_swapIfInBounds (since := "2024-11-24")]
abbrev Array.size_swap! {α : Type u_1} {xs : Array α} {i j : Nat} :
Equations

swapAt #

@[simp]
theorem Array.swapAt_def {α : Type u_1} {xs : Array α} {i : Nat} {v : α} (hi : i < xs.size) :
xs.swapAt i v hi = (xs[i], xs.set i v hi)
theorem Array.size_swapAt {α : Type u_1} {xs : Array α} {i : Nat} {v : α} (hi : i < xs.size) :
(xs.swapAt i v hi).snd.size = xs.size
@[simp]
theorem Array.swapAt!_def {α : Type u_1} {xs : Array α} {i : Nat} {v : α} (h : i < xs.size) :
xs.swapAt! i v = (xs[i], xs.set i v h)
@[simp]
theorem Array.size_swapAt! {α : Type u_1} {xs : Array α} {i : Nat} {v : α} :
(xs.swapAt! i v).snd.size = xs.size

replace #

@[simp]
theorem Array.size_replace {α : Type u_1} [BEq α] {a b : α} {xs : Array α} :
(xs.replace a b).size = xs.size
@[simp]
theorem Array.replace_of_not_mem {α : Type u_1} [BEq α] [LawfulBEq α] {a b : α} {xs : Array α} (h : ¬a xs) :
xs.replace a b = xs
theorem Array.getElem?_replace {α : Type u_1} [BEq α] [LawfulBEq α] {a b : α} {xs : Array α} {i : Nat} :
(xs.replace a b)[i]? = if (xs[i]? == some a) = true then if a xs.take i then some a else some b else xs[i]?
theorem Array.getElem?_replace_of_ne {α : Type u_1} [BEq α] [LawfulBEq α] {a b : α} {xs : Array α} {i : Nat} (h : xs[i]? some a) :
(xs.replace a b)[i]? = xs[i]?
theorem Array.getElem_replace {α : Type u_1} [BEq α] [LawfulBEq α] {a b : α} {xs : Array α} {i : Nat} (h : i < xs.size) :
(xs.replace a b)[i] = if (xs[i] == a) = true then if a xs.take i then a else b else xs[i]
theorem Array.getElem_replace_of_ne {α : Type u_1} [BEq α] [LawfulBEq α] {a b : α} {xs : Array α} {i : Nat} {h : i < xs.size} (h' : xs[i] a) :
(xs.replace a b)[i] = xs[i]
theorem Array.replace_append {α : Type u_1} [BEq α] [LawfulBEq α] {a b : α} {xs ys : Array α} :
(xs ++ ys).replace a b = if a xs then xs.replace a b ++ ys else xs ++ ys.replace a b
theorem Array.replace_append_left {α : Type u_1} [BEq α] [LawfulBEq α] {a b : α} {xs ys : Array α} (h : a xs) :
(xs ++ ys).replace a b = xs.replace a b ++ ys
theorem Array.replace_append_right {α : Type u_1} [BEq α] [LawfulBEq α] {a b : α} {xs ys : Array α} (h : ¬a xs) :
(xs ++ ys).replace a b = xs ++ ys.replace a b
theorem Array.replace_extract {α : Type u_1} [BEq α] [LawfulBEq α] {a b : α} {xs : Array α} {i : Nat} :
(xs.extract 0 i).replace a b = (xs.replace a b).extract 0 i
@[simp]
theorem Array.replace_replicate_self {α : Type u_1} [BEq α] [LawfulBEq α] {n : Nat} {b a : α} (h : 0 < n) :
(replicate n a).replace a b = #[b] ++ replicate (n - 1) a
@[reducible, inline, deprecated Array.replace_replicate_self (since := "2025-03-18")]
abbrev Array.replace_mkArray_self {α : Type u_1} [BEq α] [LawfulBEq α] {n : Nat} {b a : α} (h : 0 < n) :
(replicate n a).replace a b = #[b] ++ replicate (n - 1) a
Equations
@[simp]
theorem Array.replace_replicate_ne {α : Type u_1} [BEq α] [LawfulBEq α] {n : Nat} {a b c : α} (h : (!b == a) = true) :
@[reducible, inline, deprecated Array.replace_replicate_ne (since := "2025-03-18")]
abbrev Array.replace_mkArray_ne {α : Type u_1} [BEq α] [LawfulBEq α] {n : Nat} {a b c : α} (h : (!b == a) = true) :
Equations

Logic #

any / all #

theorem Array.not_any_eq_all_not {α : Type u_1} {xs : Array α} {p : αBool} :
(!xs.any p) = xs.all fun (a : α) => !p a
theorem Array.not_all_eq_any_not {α : Type u_1} {xs : Array α} {p : αBool} :
(!xs.all p) = xs.any fun (a : α) => !p a
theorem Array.and_any_distrib_left {α : Type u_1} {xs : Array α} {p : αBool} {q : Bool} :
(q && xs.any p) = xs.any fun (a : α) => q && p a
theorem Array.and_any_distrib_right {α : Type u_1} {xs : Array α} {p : αBool} {q : Bool} :
(xs.any p && q) = xs.any fun (a : α) => p a && q
theorem Array.or_all_distrib_left {α : Type u_1} {xs : Array α} {p : αBool} {q : Bool} :
(q || xs.all p) = xs.all fun (a : α) => q || p a
theorem Array.or_all_distrib_right {α : Type u_1} {xs : Array α} {p : αBool} {q : Bool} :
(xs.all p || q) = xs.all fun (a : α) => p a || q
theorem Array.any_eq_not_all_not {α : Type u_1} {xs : Array α} {p : αBool} :
xs.any p = !xs.all fun (x : α) => !p x
@[simp]
theorem Array.any_map' {α : Type u_1} {β : Type u_2} {stop : Nat} {f : αβ} {xs : Array α} {p : βBool} (w : stop = xs.size) :
(map f xs).any p 0 stop = xs.any (p f)

Variant of any_map with a side condition for the stop argument.

@[simp]
theorem Array.all_map' {α : Type u_1} {β : Type u_2} {stop : Nat} {f : αβ} {xs : Array α} {p : βBool} (w : stop = xs.size) :
(map f xs).all p 0 stop = xs.all (p f)

Variant of all_map with a side condition for the stop argument.

theorem Array.any_map {α : Type u_1} {β : Type u_2} {f : αβ} {xs : Array α} {p : βBool} :
(map f xs).any p = xs.any (p f)
theorem Array.all_map {α : Type u_1} {β : Type u_2} {f : αβ} {xs : Array α} {p : βBool} :
(map f xs).all p = xs.all (p f)
@[simp]
theorem Array.any_filter' {α : Type u_1} {stop : Nat} {xs : Array α} {p q : αBool} (w : stop = (filter p xs).size) :
(filter p xs).any q 0 stop = xs.any fun (a : α) => p a && q a

Variant of any_filter with a side condition for the stop argument.

@[simp]
theorem Array.all_filter' {α : Type u_1} {stop : Nat} {xs : Array α} {p q : αBool} (w : stop = (filter p xs).size) :
(filter p xs).all q 0 stop = xs.all fun (a : α) => !p a || q a

Variant of all_filter with a side condition for the stop argument.

theorem Array.any_filter {α : Type u_1} {xs : Array α} {p q : αBool} :
(filter p xs).any q = xs.any fun (a : α) => p a && q a
theorem Array.all_filter {α : Type u_1} {xs : Array α} {p q : αBool} :
(filter p xs).all q = xs.all fun (a : α) => !p a || q a
@[simp]
theorem Array.any_filterMap' {α : Type u_1} {β : Type u_2} {stop : Nat} {xs : Array α} {f : αOption β} {p : βBool} (w : stop = (filterMap f xs).size) :
(filterMap f xs).any p 0 stop = xs.any fun (a : α) => match f a with | some b => p b | none => false

Variant of any_filterMap with a side condition for the stop argument.

@[simp]
theorem Array.all_filterMap' {α : Type u_1} {β : Type u_2} {stop : Nat} {xs : Array α} {f : αOption β} {p : βBool} (w : stop = (filterMap f xs).size) :
(filterMap f xs).all p 0 stop = xs.all fun (a : α) => match f a with | some b => p b | none => true

Variant of all_filterMap with a side condition for the stop argument.

theorem Array.any_filterMap {α : Type u_1} {β : Type u_2} {xs : Array α} {f : αOption β} {p : βBool} :
(filterMap f xs).any p = xs.any fun (a : α) => match f a with | some b => p b | none => false
theorem Array.all_filterMap {α : Type u_1} {β : Type u_2} {xs : Array α} {f : αOption β} {p : βBool} :
(filterMap f xs).all p = xs.all fun (a : α) => match f a with | some b => p b | none => true
@[simp]
theorem Array.any_append' {α : Type u_1} {stop : Nat} {f : αBool} {xs ys : Array α} (w : stop = (xs ++ ys).size) :
(xs ++ ys).any f 0 stop = (xs.any f || ys.any f)

Variant of any_append with a side condition for the stop argument.

@[simp]
theorem Array.all_append' {α : Type u_1} {stop : Nat} {f : αBool} {xs ys : Array α} (w : stop = (xs ++ ys).size) :
(xs ++ ys).all f 0 stop = (xs.all f && ys.all f)

Variant of all_append with a side condition for the stop argument.

theorem Array.any_append {α : Type u_1} {f : αBool} {xs ys : Array α} :
(xs ++ ys).any f = (xs.any f || ys.any f)
theorem Array.all_append {α : Type u_1} {f : αBool} {xs ys : Array α} :
(xs ++ ys).all f = (xs.all f && ys.all f)
theorem Array.anyM_congr {m : TypeType u_1} {α : Type u_2} {start₁ start₂ stop₁ stop₂ : Nat} [Monad m] {xs ys : Array α} (w : xs = ys) {p q : αm Bool} (h : ∀ (a : α), p a = q a) (wstart : start₁ = start₂) (wstop : stop₁ = stop₂) :
anyM p xs start₁ stop₁ = anyM q ys start₂ stop₂
theorem Array.any_congr {α : Type u_1} {start₁ start₂ stop₁ stop₂ : Nat} {xs ys : Array α} (w : xs = ys) {p q : αBool} (h : ∀ (a : α), p a = q a) (wstart : start₁ = start₂) (wstop : stop₁ = stop₂) :
xs.any p start₁ stop₁ = ys.any q start₂ stop₂
theorem Array.allM_congr {m : TypeType u_1} {α : Type u_2} {start₁ start₂ stop₁ stop₂ : Nat} [Monad m] {xs ys : Array α} (w : xs = ys) {p q : αm Bool} (h : ∀ (a : α), p a = q a) (wstart : start₁ = start₂) (wstop : stop₁ = stop₂) :
allM p xs start₁ stop₁ = allM q ys start₂ stop₂
theorem Array.all_congr {α : Type u_1} {start₁ start₂ stop₁ stop₂ : Nat} {xs ys : Array α} (w : xs = ys) {p q : αBool} (h : ∀ (a : α), p a = q a) (wstart : start₁ = start₂) (wstop : stop₁ = stop₂) :
xs.all p start₁ stop₁ = ys.all q start₂ stop₂
@[simp]
theorem Array.any_flatten' {α : Type u_1} {stop : Nat} {f : αBool} {xss : Array (Array α)} (w : stop = xss.flatten.size) :
xss.flatten.any f 0 stop = xss.any fun (x : Array α) => x.any f
@[simp]
theorem Array.all_flatten' {α : Type u_1} {stop : Nat} {f : αBool} {xss : Array (Array α)} (w : stop = xss.flatten.size) :
xss.flatten.all f 0 stop = xss.all fun (x : Array α) => x.all f
theorem Array.any_flatten {α : Type u_1} {f : αBool} {xss : Array (Array α)} :
xss.flatten.any f = xss.any fun (x : Array α) => x.any f
theorem Array.all_flatten {α : Type u_1} {f : αBool} {xss : Array (Array α)} :
xss.flatten.all f = xss.all fun (x : Array α) => x.all f
@[simp]
theorem Array.any_flatMap' {α : Type u_1} {β : Type u_2} {stop : Nat} {xs : Array α} {f : αArray β} {p : βBool} (w : stop = (flatMap f xs).size) :
(flatMap f xs).any p 0 stop = xs.any fun (a : α) => (f a).any p

Variant of any_flatMap with a side condition for the stop argument.

@[simp]
theorem Array.all_flatMap' {α : Type u_1} {β : Type u_2} {stop : Nat} {xs : Array α} {f : αArray β} {p : βBool} (w : stop = (flatMap f xs).size) :
(flatMap f xs).all p 0 stop = xs.all fun (a : α) => (f a).all p

Variant of all_flatMap with a side condition for the stop argument.

theorem Array.any_flatMap {α : Type u_1} {β : Type u_2} {xs : Array α} {f : αArray β} {p : βBool} :
(flatMap f xs).any p = xs.any fun (a : α) => (f a).any p
theorem Array.all_flatMap {α : Type u_1} {β : Type u_2} {xs : Array α} {f : αArray β} {p : βBool} :
(flatMap f xs).all p = xs.all fun (a : α) => (f a).all p
@[simp]
theorem Array.any_reverse' {α : Type u_1} {stop : Nat} {f : αBool} {xs : Array α} (w : stop = xs.size) :
xs.reverse.any f 0 stop = xs.any f

Variant of any_reverse with a side condition for the stop argument.

@[simp]
theorem Array.all_reverse' {α : Type u_1} {stop : Nat} {f : αBool} {xs : Array α} (w : stop = xs.size) :
xs.reverse.all f 0 stop = xs.all f

Variant of all_reverse with a side condition for the stop argument.

theorem Array.any_reverse {α : Type u_1} {f : αBool} {xs : Array α} :
xs.reverse.any f = xs.any f
theorem Array.all_reverse {α : Type u_1} {f : αBool} {xs : Array α} :
xs.reverse.all f = xs.all f
@[simp]
theorem Array.any_replicate {α : Type u_1} {f : αBool} {n : Nat} {a : α} :
(replicate n a).any f = if n = 0 then false else f a
@[reducible, inline, deprecated Array.any_replicate (since := "2025-03-18")]
abbrev Array.any_mkArray {α : Type u_1} {f : αBool} {n : Nat} {a : α} :
(replicate n a).any f = if n = 0 then false else f a
Equations
@[simp]
theorem Array.all_replicate {α : Type u_1} {f : αBool} {n : Nat} {a : α} :
(replicate n a).all f = if n = 0 then true else f a
@[reducible, inline, deprecated Array.all_replicate (since := "2025-03-18")]
abbrev Array.all_mkArray {α : Type u_1} {f : αBool} {n : Nat} {a : α} :
(replicate n a).all f = if n = 0 then true else f a
Equations

toListRev #

@[inline]
def Array.toListRev {α : Type u_1} (xs : Array α) :
List α

Converts an array to a list that contains the same elements in the opposite order.

This is equivalent to, but more efficient than, Array.toListList.reverse.

Examples:

Equations
@[simp]
theorem Array.toListRev_eq {α : Type u_1} {xs : Array α} :

appendList #

@[simp]
theorem Array.appendList_nil {α : Type u_1} {xs : Array α} :
xs ++ [] = xs
@[simp]
theorem Array.appendList_cons {α : Type u_1} {xs : Array α} {a : α} {l : List α} :
xs ++ a :: l = xs.push a ++ l

Preliminaries about ofFn #

@[simp, irreducible]
theorem Array.size_ofFn_go {α : Type u_1} {n : Nat} {f : Fin nα} {i : Nat} {acc : Array α} :
(ofFn.go f i acc).size = acc.size + (n - i)
@[simp]
theorem Array.size_ofFn {α : Type u_1} {n : Nat} {f : Fin nα} :
(ofFn f).size = n
@[irreducible]
theorem Array.getElem_ofFn_go {n : Nat} {α : Type u_1} {f : Fin nα} {i : Nat} {acc : Array α} {k : Nat} (hki : k < n) (hin : i n) (hi : i = acc.size) (hacc : ∀ (j : Nat) (hj : j < acc.size), acc[j] = f j, ) :
(ofFn.go f i acc)[k] = f k, hki
@[simp]
theorem Array.getElem_ofFn {n : Nat} {α : Type u_1} {f : Fin nα} {i : Nat} (h : i < (ofFn f).size) :
(ofFn f)[i] = f i,
theorem Array.getElem?_ofFn {n : Nat} {α : Type u_1} {f : Fin nα} {i : Nat} :
(ofFn f)[i]? = if h : i < n then some (f i, h) else none

Preliminaries about range and range' #

@[simp]
theorem Array.size_range' {start size step : Nat} :
(range' start size step).size = size
@[simp]
theorem Array.toList_range' {start size step : Nat} :
(range' start size step).toList = List.range' start size step
@[simp]
theorem Array.getElem_range' {start size step i : Nat} (h : i < (range' start size step).size) :
(range' start size step)[i] = start + step * i
theorem Array.getElem?_range' {start size step i : Nat} :
(range' start size step)[i]? = if i < size then some (start + step * i) else none
@[simp]
theorem List.toArray_range' {start size step : Nat} :
(range' start size step).toArray = Array.range' start size step
@[simp]
theorem Array.size_range {n : Nat} :
(range n).size = n
@[simp]
@[simp]
theorem Array.getElem_range {n i : Nat} (h : i < (range n).size) :
(range n)[i] = i
@[simp]

Content below this point has not yet been aligned with List.

sum #

theorem Array.sum_eq_sum_toList {α : Type u_1} [Add α] [Zero α] {as : Array α} :
as.toList.sum = as.sum
theorem Array.foldl_toList_eq_flatMap {α : Type u_1} {β : Type u_2} {l : List α} {acc : Array β} {F : Array βαArray β} {G : αList β} (H : ∀ (acc : Array β) (a : α), (F acc a).toList = acc.toList ++ G a) :
theorem Array.foldl_toList_eq_map {α : Type u_1} {β : Type u_2} {l : List α} {acc : Array β} {G : αβ} :
(List.foldl (fun (acc : Array β) (a : α) => acc.push (G a)) acc l).toList = acc.toList ++ List.map G l

uset #

theorem Array.size_uset {α : Type u_1} {xs : Array α} {v : α} {i : USize} (h : i.toNat < xs.size) :
(xs.uset i v h).size = xs.size

get #

@[simp]
theorem Array.getD_eq_getD_getElem? {α : Type u_1} {xs : Array α} {i : Nat} {d : α} :
xs.getD i d = xs[i]?.getD d
theorem Array.getElem!_eq_getD {α : Type u_1} [Inhabited α] {xs : Array α} {i : Nat} :
xs[i]! = xs.getD i default

mem #

@[simp]
theorem Array.mem_toList {α : Type u_1} {a : α} {xs : Array α} :
a xs.toList a xs
@[deprecated Array.not_mem_empty (since := "2025-03-25")]
theorem Array.not_mem_nil {α : Type u_1} (a : α) :

get lemmas #

theorem Array.lt_of_getElem {α : Type u_1} {x : α} {xs : Array α} {i : Nat} {hidx : i < xs.size} :
xs[i] = xi < xs.size
theorem Array.getElem_fin_eq_getElem_toList {α : Type u_1} {xs : Array α} {i : Fin xs.size} :
xs[i] = xs.toList[i]
@[simp]
theorem Array.ugetElem_eq_getElem {α : Type u_1} {xs : Array α} {i : USize} (h : i.toNat < xs.size) :
xs[i] = xs[i.toNat]
theorem Array.getElem?_size_le {α : Type u_1} {xs : Array α} {i : Nat} (h : xs.size i) :
theorem Array.getElem_mem_toList {α : Type u_1} {xs : Array α} {i : Nat} (h : i < xs.size) :
xs[i] xs.toList
theorem Array.back!_eq_back? {α : Type u_1} [Inhabited α] {xs : Array α} :
@[simp]
theorem Array.back?_push {α : Type u_1} {xs : Array α} {x : α} :
(xs.push x).back? = some x
@[simp]
theorem Array.back!_push {α : Type u_1} [Inhabited α] {xs : Array α} {x : α} :
(xs.push x).back! = x
theorem Array.getElem?_push_lt {α : Type u_1} {xs : Array α} {x : α} {i : Nat} (h : i < xs.size) :
(xs.push x)[i]? = some xs[i]
theorem Array.getElem?_push_eq {α : Type u_1} {xs : Array α} {x : α} :
(xs.push x)[xs.size]? = some x
@[simp]
theorem Array.getElem?_size {α : Type u_1} {xs : Array α} :

forIn #

@[simp]
theorem Array.forIn_toList {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} [Monad m] {xs : Array α} {b : β} {f : αβm (ForInStep β)} :
forIn xs.toList b f = forIn xs b f
@[simp]
theorem Array.forIn'_toList {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} [Monad m] {xs : Array α} {b : β} {f : (a : α) → a xs.toListβm (ForInStep β)} :
forIn' xs.toList b f = forIn' xs b fun (a : α) (m : a xs) (b : β) => f a b

contains #

theorem Array.contains_def {α : Type u_1} [DecidableEq α] {a : α} {xs : Array α} :
xs.contains a = true a xs

isPrefixOf #

@[simp]
theorem Array.isPrefixOf_toList {α : Type u_1} [BEq α] {xs ys : Array α} :

zipWith #

@[simp]
theorem Array.toList_zipWith {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f : αβγ} {xs : Array α} {ys : Array β} :
@[simp]
theorem Array.toList_zip {α : Type u_1} {β : Type u_2} {xs : Array α} {ys : Array β} :
(xs.zip ys).toList = xs.toList.zip ys.toList
@[simp]
theorem Array.toList_zipWithAll {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f : Option αOption βγ} {xs : Array α} {ys : Array β} :
@[simp]
theorem Array.size_zipWith {α : Type u_1} {β : Type u_2} {γ : Type u_3} {xs : Array α} {ys : Array β} {f : αβγ} :
(zipWith f xs ys).size = min xs.size ys.size
@[simp]
theorem Array.size_zip {α : Type u_1} {β : Type u_2} {xs : Array α} {ys : Array β} :
(xs.zip ys).size = min xs.size ys.size
@[simp]
theorem Array.getElem_zipWith {α : Type u_1} {β : Type u_2} {γ : Type u_3} {xs : Array α} {ys : Array β} {f : αβγ} {i : Nat} (hi : i < (zipWith f xs ys).size) :
(zipWith f xs ys)[i] = f xs[i] ys[i]

findSomeM?, findM?, findSome?, find? #

@[simp]
theorem Array.findSomeM?_toList {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} [Monad m] [LawfulMonad m] {p : αm (Option β)} {xs : Array α} :
@[simp]
theorem Array.findM?_toList {m : TypeType u_1} {α : Type} [Monad m] [LawfulMonad m] {p : αm Bool} {xs : Array α} :
@[simp]
theorem Array.findSome?_toList {α : Type u_1} {β : Type u_2} {p : αOption β} {xs : Array α} :
@[simp]
theorem Array.find?_toList {α : Type u_1} {p : αBool} {xs : Array α} :
@[simp]
theorem Array.finIdxOf?_toList {α : Type u_1} [BEq α] {a : α} {xs : Array α} :
@[simp]
theorem Array.findFinIdx?_toList {α : Type u_1} {p : αBool} {xs : Array α} :

More theorems about List.toArray, followed by an Array operation. #

Our goal is to have simp "pull List.toArray outwards" as much as possible.

@[simp]
theorem List.take_toArray {α : Type u_1} {l : List α} {i : Nat} :
@[simp]
theorem List.mapM_toArray {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} [Monad m] [LawfulMonad m] {f : αm β} {l : List α} :
theorem List.uset_toArray {α : Type u_1} {l : List α} {i : USize} {a : α} {h : i.toNat < l.toArray.size} :
l.toArray.uset i a h = (l.set i.toNat a).toArray
@[simp]
theorem List.modify_toArray {α : Type u_1} {f : αα} {l : List α} {i : Nat} :
l.toArray.modify i f = (l.modify i f).toArray
@[simp]
theorem Array.toList_takeWhile {α : Type u_1} {p : αBool} {as : Array α} :
@[simp]
theorem Array.toList_eraseIdx {α : Type u_1} {xs : Array α} {i : Nat} {h : i < xs.size} :
@[simp]
theorem Array.toList_eraseIdxIfInBounds {α : Type u_1} {xs : Array α} {i : Nat} :

findSomeRevM?, findRevM?, findSomeRev?, findRev? #

@[simp]
theorem Array.findSomeRevM?_eq_findSomeM?_reverse {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} [Monad m] [LawfulMonad m] {f : αm (Option β)} {xs : Array α} :
@[simp]
theorem Array.findRevM?_eq_findM?_reverse {m : TypeType u_1} {α : Type} [Monad m] [LawfulMonad m] {f : αm Bool} {xs : Array α} :
@[simp]
theorem Array.findSomeRev?_eq_findSome?_reverse {α : Type u_1} {β : Type u_2} {f : αOption β} {xs : Array α} :
@[simp]
theorem Array.findRev?_eq_find?_reverse {α : Type} {f : αBool} {xs : Array α} :

unzip #

@[simp]
theorem Array.fst_unzip {α : Type u_1} {β : Type u_2} {xs : Array (α × β)} :
@[simp]
theorem Array.snd_unzip {α : Type u_1} {β : Type u_2} {xs : Array (α × β)} :
theorem Array.toList_fst_unzip {α : Type u_1} {β : Type u_2} {xs : Array (α × β)} :
theorem Array.toList_snd_unzip {α : Type u_1} {β : Type u_2} {xs : Array (α × β)} :
@[simp]
theorem List.unzip_toArray {α : Type u_1} {β : Type u_2} {as : List (α × β)} :
@[simp]
theorem List.firstM_toArray {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} [Alternative m] {as : List α} {f : αm β} :

Deprecations #

@[reducible, inline, deprecated List.setIfInBounds_toArray (since := "2024-11-24")]
abbrev List.setD_toArray {α : Type u_1} (l : List α) (i : Nat) (a : α) :
Equations
@[deprecated Array.size_toArray (since := "2024-12-11")]
theorem Array.size_mk {α : Type u_1} (as : List α) :
{ toList := as }.size = as.length
@[deprecated Array.getElem?_eq_getElem (since := "2024-12-11")]
theorem Array.getElem?_lt {α : Type u_1} (xs : Array α) {i : Nat} (h : i < xs.size) :
xs[i]? = some xs[i]
@[deprecated Array.getElem?_eq_none (since := "2024-12-11")]
theorem Array.getElem?_ge {α : Type u_1} (xs : Array α) {i : Nat} (h : i xs.size) :
@[simp, deprecated "`get?` is deprecated" (since := "2025-02-12")]
theorem Array.get?_eq_getElem? {α : Type u_1} (xs : Array α) (i : Nat) :
xs.get? i = xs[i]?
@[deprecated Array.getElem?_eq_none (since := "2024-12-11")]
theorem Array.getElem?_len_le {α : Type u_1} (xs : Array α) {i : Nat} (h : xs.size i) :
@[reducible, inline, deprecated Array.getD_getElem? (since := "2024-12-11")]
abbrev Array.getD_get? {α : Type u_1} {xs : Array α} {i : Nat} {d : α} :
xs[i]?.getD d = if p : i < xs.size then xs[i] else d
Equations
@[reducible, inline, deprecated Array.getD_eq_getD_getElem? (since := "2025-02-12")]
abbrev Array.getD_eq_get? {α : Type u_1} {xs : Array α} {i : Nat} {d : α} :
xs.getD i d = xs[i]?.getD d
Equations
@[deprecated Array.getElem!_eq_getD (since := "2025-02-12")]
theorem Array.get!_eq_getD {α : Type u_1} {n : Nat} [Inhabited α] (xs : Array α) :
xs.get! n = xs.getD n default
@[deprecated "Use `a[i]!` instead of `a.get! i`." (since := "2025-02-12")]
theorem Array.get!_eq_getD_getElem? {α : Type u_1} [Inhabited α] (xs : Array α) (i : Nat) :
@[reducible, inline, deprecated Array.get!_eq_getD_getElem? (since := "2025-02-12")]
abbrev Array.get!_eq_getElem? {α : Type u_1} [Inhabited α] (xs : Array α) (i : Nat) :
Equations
@[reducible, inline, deprecated Array.mem_of_back? (since := "2024-10-21")]
abbrev Array.mem_of_back?_eq_some {α : Type u_1} {xs : Array α} {a : α} (h : xs.back? = some a) :
a xs
Equations
@[reducible, inline, deprecated Array.getElem?_size_le (since := "2024-10-21")]
abbrev Array.get?_len_le {α : Type u_1} {xs : Array α} {i : Nat} (h : xs.size i) :
Equations
@[deprecated "`Array.get?` is deprecated, use `a[i]?` instead." (since := "2025-02-12")]
theorem Array.get?_eq_get?_toList {α : Type u_1} (xs : Array α) (i : Nat) :
xs.get? i = xs.toList.get? i
@[reducible, inline, deprecated Array.get!_eq_getD_getElem? (since := "2025-02-12")]
abbrev Array.get!_eq_get? {α : Type u_1} [Inhabited α] (xs : Array α) (i : Nat) :
Equations
@[reducible, inline, deprecated Array.getElem?_push_lt (since := "2024-10-21")]
abbrev Array.get?_push_lt {α : Type u_1} {xs : Array α} {x : α} {i : Nat} (h : i < xs.size) :
(xs.push x)[i]? = some xs[i]
Equations
@[reducible, inline, deprecated Array.getElem?_push_eq (since := "2024-10-21")]
abbrev Array.get?_push_eq {α : Type u_1} {xs : Array α} {x : α} :
(xs.push x)[xs.size]? = some x
Equations
@[reducible, inline, deprecated Array.getElem?_push (since := "2024-10-21")]
abbrev Array.get?_push {α : Type u_1} {i : Nat} {xs : Array α} {x : α} :
(xs.push x)[i]? = if i = xs.size then some x else xs[i]?
Equations
@[reducible, inline, deprecated Array.getElem?_size (since := "2024-10-21")]
abbrev Array.get?_size {α : Type u_1} {xs : Array α} :
Equations
@[deprecated Array.getElem_set_self (since := "2025-01-17")]
theorem Array.get_set_eq {α : Type u_1} (xs : Array α) (i : Nat) (v : α) (h : i < xs.size) :
(xs.set i v h)[i] = v
@[reducible, inline, deprecated Array.foldl_toList_eq_flatMap (since := "2024-10-16")]
abbrev Array.foldl_toList_eq_bind {α : Type u_1} {β : Type u_2} {l : List α} {acc : Array β} {F : Array βαArray β} {G : αList β} (H : ∀ (acc : Array β) (a : α), (F acc a).toList = acc.toList ++ G a) :
Equations
@[reducible, inline, deprecated Array.foldl_toList_eq_flatMap (since := "2024-10-16")]
abbrev Array.foldl_data_eq_bind {α : Type u_1} {β : Type u_2} {l : List α} {acc : Array β} {F : Array βαArray β} {G : αList β} (H : ∀ (acc : Array β) (a : α), (F acc a).toList = acc.toList ++ G a) :
Equations
@[reducible, inline, deprecated Array.getElem_mem (since := "2024-10-17")]
abbrev Array.getElem?_mem {α : Type u_1} {xs : Array α} {i : Nat} (h : i < xs.size) :
xs[i] xs
Equations
@[reducible, inline, deprecated Array.getElem_fin_eq_getElem_toList (since := "2024-10-17")]
abbrev Array.getElem_fin_eq_toList_get {α : Type u_1} {xs : Array α} {i : Fin xs.size} :
xs[i] = xs.toList[i]
Equations
@[reducible, inline, deprecated "Use reverse direction of `getElem?_toList`" (since := "2024-10-17")]
abbrev Array.getElem?_eq_toList_getElem? {α : Type u_1} {xs : Array α} {i : Nat} :
xs.toList[i]? = xs[i]?
Equations
@[reducible, inline, deprecated Array.getElem?_swap (since := "2024-10-17")]
abbrev Array.get?_swap {α : Type u_1} {xs : Array α} {i j : Nat} (hi : i < xs.size) (hj : j < xs.size) {k : Nat} :
(xs.swap i j hi hj)[k]? = if j = k then some xs[i] else if i = k then some xs[j] else xs[k]?
Equations
@[reducible, inline, deprecated Array.getElem_push (since := "2024-10-21")]
abbrev Array.get_push {α : Type u_1} {xs : Array α} {x : α} {i : Nat} (h : i < (xs.push x).size) :
(xs.push x)[i] = if h : i < xs.size then xs[i] else x
Equations
@[reducible, inline, deprecated Array.getElem_push_lt (since := "2024-10-21")]
abbrev Array.get_push_lt {α : Type u_1} {xs : Array α} {x : α} {i : Nat} (h : i < xs.size) :
let_fun this := ; (xs.push x)[i] = xs[i]
Equations
@[reducible, inline, deprecated Array.getElem_push_eq (since := "2024-10-21")]
abbrev Array.get_push_eq {α : Type u_1} {xs : Array α} {x : α} :
(xs.push x)[xs.size] = x
Equations
@[reducible, inline, deprecated Array.back!_eq_back? (since := "2024-10-31")]
abbrev Array.back_eq_back? {α : Type u_1} [Inhabited α] {xs : Array α} :
Equations
@[reducible, inline, deprecated Array.back!_push (since := "2024-10-31")]
abbrev Array.back_push {α : Type u_1} [Inhabited α] {xs : Array α} {x : α} :
(xs.push x).back! = x
Equations
@[reducible, inline, deprecated Array.eq_push_pop_back!_of_size_ne_zero (since := "2024-10-31")]
abbrev Array.eq_push_pop_back_of_size_ne_zero {α : Type u_1} [Inhabited α] {xs : Array α} (h : xs.size 0) :
xs = xs.pop.push xs.back!
Equations
@[reducible, inline, deprecated Array.set!_is_setIfInBounds (since := "2024-11-24")]
Equations
@[reducible, inline, deprecated Array.size_setIfInBounds (since := "2024-11-24")]
abbrev Array.size_setD {α : Type u_1} {xs : Array α} {i : Nat} {a : α} :
(xs.setIfInBounds i a).size = xs.size
Equations
@[reducible, inline, deprecated Array.getElem_setIfInBounds_eq (since := "2024-11-24")]
abbrev Array.getElem_setD_eq {α : Type u_1} {xs : Array α} {i : Nat} {a : α} (h : i < (xs.setIfInBounds i a).size) :
(xs.setIfInBounds i a)[i] = a
Equations
@[reducible, inline, deprecated Array.getElem?_setIfInBounds_eq (since := "2024-11-24")]
abbrev Array.get?_setD_eq {α : Type u_1} {xs : Array α} {i : Nat} {a : α} :
Equations
@[reducible, inline, deprecated Array.getD_get?_setIfInBounds (since := "2024-11-24")]
abbrev Array.getD_setD {α : Type u_1} {xs : Array α} {i : Nat} {v d : α} :
(xs.setIfInBounds i v)[i]?.getD d = if i < xs.size then v else d
Equations
@[reducible, inline, deprecated Array.getElem_setIfInBounds (since := "2024-11-24")]
abbrev Array.getElem_setD {α : Type u_1} {xs : Array α} {i : Nat} {a : α} {j : Nat} (hj : j < xs.size) :
(xs.setIfInBounds i a)[j] = if i = j then a else xs[j]
Equations
@[deprecated List.getElem_toArray (since := "2024-11-29")]
theorem Array.getElem_mk {α : Type u_1} {xs : List α} {i : Nat} (h : i < xs.length) :
{ toList := xs }[i] = xs[i]
@[deprecated Array.getElem_toList (since := "2024-12-08")]
theorem Array.getElem_eq_getElem_toList {α : Type u_1} {i : Nat} {xs : Array α} (h : i < xs.size) :
xs[i] = xs.toList[i]
@[deprecated Array.getElem?_toList (since := "2024-12-08")]
theorem Array.getElem?_eq_getElem?_toList {α : Type u_1} (xs : Array α) (i : Nat) :
xs[i]? = xs.toList[i]?
@[deprecated LawfulGetElem.getElem?_def (since := "2024-12-08")]
theorem Array.getElem?_eq {α : Type u_1} {xs : Array α} {i : Nat} :
xs[i]? = if h : i < xs.size then some xs[i] else none

map #

@[deprecated "Use `toList_map` or `List.map_toArray` to characterize `Array.map`." (since := "2025-01-06")]
theorem Array.map_induction {α : Type u_1} {β : Type u_2} (xs : Array α) (f : αβ) (motive : NatProp) (h0 : motive 0) (p : Fin xs.sizeβProp) (hs : ∀ (i : Fin xs.size), motive ip i (f xs[i]) motive (i + 1)) :
motive xs.size (eq : (map f xs).size = xs.size), ∀ (i : Nat) (h : i < xs.size), p i, h (map f xs)[i]
@[deprecated "Use `toList_map` or `List.map_toArray` to characterize `Array.map`." (since := "2025-01-06")]
theorem Array.map_spec {α : Type u_1} {β : Type u_2} (xs : Array α) (f : αβ) (p : Fin xs.sizeβProp) (hs : ∀ (i : Fin xs.size), p i (f xs[i])) :
(eq : (map f xs).size = xs.size), ∀ (i : Nat) (h : i < xs.size), p i, h (map f xs)[i]

set #

@[reducible, inline, deprecated Array.getElem?_set_eq (since := "2025-02-27")]
abbrev Array.get?_set_eq {α : Type u_1} {xs : Array α} {i : Nat} (h : i < xs.size) {v : α} :
(xs.set i v h)[i]? = some v
Equations
@[reducible, inline, deprecated Array.getElem?_set_ne (since := "2025-02-27")]
abbrev Array.get?_set_ne {α : Type u_1} {xs : Array α} {i : Nat} (h : i < xs.size) {v : α} {j : Nat} (ne : i j) :
(xs.set i v h)[j]? = xs[j]?
Equations
@[reducible, inline, deprecated Array.getElem?_set (since := "2025-02-27")]
abbrev Array.get?_set {α : Type u_1} {xs : Array α} {i : Nat} (h : i < xs.size) {v : α} {j : Nat} :
(xs.set i v h)[j]? = if i = j then some v else xs[j]?
Equations
@[reducible, inline, deprecated Array.get_set (since := "2025-02-27")]
abbrev Array.get_set {α : Type u_1} {xs : Array α} {i : Nat} (h' : i < xs.size) {v : α} {j : Nat} (h : j < (xs.set i v h').size) :
(xs.set i v h')[j] = if i = j then v else xs[j]
Equations
@[reducible, inline, deprecated Array.get_set_ne (since := "2025-02-27")]
abbrev Array.get_set_ne {α : Type u_1} {xs : Array α} {i : Nat} (h' : i < xs.size) {v : α} {j : Nat} (pj : j < xs.size) (h : i j) :
(xs.set i v h')[j] = xs[j]
Equations