Documentation

Init.Data.List.Nat.TakeDrop

Further lemmas about List.take, List.drop, List.zip and List.zipWith. #

These are in a separate file from most of the list lemmas as they required importing more lemmas about natural numbers, and use omega.

take #

@[simp]
theorem List.length_take {α : Type u_1} {i : Nat} {l : List α} :
(take i l).length = min i l.length
theorem List.length_take_le {α : Type u_1} (i : Nat) (l : List α) :
(take i l).length i
theorem List.length_take_le' {α : Type u_1} (i : Nat) (l : List α) :
theorem List.length_take_of_le {i : Nat} {α✝ : Type u_1} {l : List α✝} (h : i l.length) :
(take i l).length = i
theorem List.getElem_take' {α : Type u_1} {xs : List α} {i j : Nat} (hi : i < xs.length) (hj : i < j) :
xs[i] = (take j xs)[i]

The i-th element of a list coincides with the i-th element of any of its prefixes of length > i. Version designed to rewrite from the big list to the small list.

@[simp]
theorem List.getElem_take {α : Type u_1} {xs : List α} {j i : Nat} {h : i < (take j xs).length} :
(take j xs)[i] = xs[i]

The i-th element of a list coincides with the i-th element of any of its prefixes of length > i. Version designed to rewrite from the small list to the big list.

theorem List.getElem?_take_eq_none {α : Type u_1} {l : List α} {i j : Nat} (h : i j) :
(take i l)[j]? = none
theorem List.getElem?_take {α : Type u_1} {l : List α} {i j : Nat} :
(take i l)[j]? = if j < i then l[j]? else none
theorem List.head?_take {α : Type u_1} {l : List α} {i : Nat} :
(take i l).head? = if i = 0 then none else l.head?
theorem List.head_take {α : Type u_1} {l : List α} {i : Nat} (h : take i l []) :
(take i l).head h = l.head
theorem List.getLast?_take {α : Type u_1} {i : Nat} {l : List α} :
theorem List.getLast_take {α : Type u_1} {i : Nat} {l : List α} (h : take i l []) :
(take i l).getLast h = l[i - 1]?.getD (l.getLast )
theorem List.take_take {α : Type u_1} {i j : Nat} {l : List α} :
take i (take j l) = take (min i j) l
theorem List.take_set_of_le {α : Type u_1} {a : α} {i j : Nat} {l : List α} (h : j i) :
take j (l.set i a) = take j l
@[reducible, inline, deprecated List.take_set_of_le (since := "2025-02-04")]
abbrev List.take_set_of_lt {α : Type u_1} {a : α} {i j : Nat} {l : List α} (h : j i) :
take j (l.set i a) = take j l
Equations
@[simp]
theorem List.take_replicate {α : Type u_1} {a : α} {i n : Nat} :
take i (replicate n a) = replicate (min i n) a
@[simp]
theorem List.drop_replicate {α : Type u_1} {a : α} {i n : Nat} :
drop i (replicate n a) = replicate (n - i) a
theorem List.take_append_eq_append_take {α : Type u_1} {l₁ l₂ : List α} {i : Nat} :
take i (l₁ ++ l₂) = take i l₁ ++ take (i - l₁.length) l₂

Taking the first i elements in l₁ ++ l₂ is the same as appending the first i elements of l₁ to the first n - l₁.length elements of l₂.

theorem List.take_append_of_le_length {α : Type u_1} {l₁ l₂ : List α} {i : Nat} (h : i l₁.length) :
take i (l₁ ++ l₂) = take i l₁
theorem List.take_append {α : Type u_1} {l₁ l₂ : List α} (i : Nat) :
take (l₁.length + i) (l₁ ++ l₂) = l₁ ++ take i l₂

Taking the first l₁.length + i elements in l₁ ++ l₂ is the same as appending the first i elements of l₂ to l₁.

@[simp]
theorem List.take_eq_take_iff {α : Type u_1} {l : List α} {i j : Nat} :
take i l = take j l min i l.length = min j l.length
@[reducible, inline, deprecated List.take_eq_take_iff (since := "2025-02-16")]
abbrev List.take_eq_take {α : Type u_1} {l : List α} {i j : Nat} :
take i l = take j l min i l.length = min j l.length
Equations
theorem List.take_add {α : Type u_1} {l : List α} {i j : Nat} :
take (i + j) l = take i l ++ take j (drop i l)
theorem List.take_one {α : Type u_1} {l : List α} :
theorem List.take_eq_append_getElem_of_pos {α : Type u_1} {i : Nat} {l : List α} (h₁ : 0 < i) (h₂ : i < l.length) :
take i l = take (i - 1) l ++ [l[i - 1]]
theorem List.dropLast_take {α : Type u_1} {i : Nat} {l : List α} (h : i < l.length) :
(take i l).dropLast = take (i - 1) l
@[reducible, inline, deprecated List.map_eq_append_iff (since := "2024-09-05")]
abbrev List.map_eq_append_split {α : Type u_1} {β : Type u_2} {l : List α} {L₁ L₂ : List β} {f : αβ} :
map f l = L₁ ++ L₂ (l₁ : List α), (l₂ : List α), l = l₁ ++ l₂ map f l₁ = L₁ map f l₂ = L₂
Equations
theorem List.take_eq_dropLast {α : Type u_1} {l : List α} {i : Nat} (h : i + 1 = l.length) :
theorem List.take_prefix_take_left {α : Type u_1} {l : List α} {i j : Nat} (h : i j) :
take i l <+: take j l
theorem List.take_sublist_take_left {α : Type u_1} {l : List α} {i j : Nat} (h : i j) :
(take i l).Sublist (take j l)
theorem List.take_subset_take_left {α : Type u_1} (l : List α) {i j : Nat} (h : i j) :
take i l take j l

drop #

theorem List.lt_length_drop {α : Type u_1} {xs : List α} {i j : Nat} (h : i + j < xs.length) :
j < (drop i xs).length
theorem List.getElem_drop' {α : Type u_1} {xs : List α} {i j : Nat} (h : i + j < xs.length) :
xs[i + j] = (drop i xs)[j]

The i + j-th element of a list coincides with the j-th element of the list obtained by dropping the first i elements. Version designed to rewrite from the big list to the small list.

@[simp]
theorem List.getElem_drop {α : Type u_1} {xs : List α} {i j : Nat} {h : j < (drop i xs).length} :
(drop i xs)[j] = xs[i + j]

The i + j-th element of a list coincides with the j-th element of the list obtained by dropping the first i elements. Version designed to rewrite from the small list to the big list.

@[simp]
theorem List.getElem?_drop {α : Type u_1} {xs : List α} {i j : Nat} :
(drop i xs)[j]? = xs[i + j]?
theorem List.mem_take_iff_getElem {α : Type u_1} {i : Nat} {l : List α} {a : α} :
a take i l (j : Nat), (hm : j < min i l.length), l[j] = a
theorem List.mem_drop_iff_getElem {α : Type u_1} {i : Nat} {l : List α} {a : α} :
a drop i l (j : Nat), (hm : j + i < l.length), l[i + j] = a
@[simp]
theorem List.head?_drop {α : Type u_1} {l : List α} {i : Nat} :
(drop i l).head? = l[i]?
@[simp]
theorem List.head_drop {α : Type u_1} {l : List α} {i : Nat} (h : drop i l []) :
(drop i l).head h = l[i]
theorem List.getLast?_drop {α : Type u_1} {i : Nat} {l : List α} :
@[simp]
theorem List.getLast_drop {α : Type u_1} {i : Nat} {l : List α} (h : drop i l []) :
(drop i l).getLast h = l.getLast
theorem List.drop_length_cons {α : Type u_1} {l : List α} (h : l []) (a : α) :
drop l.length (a :: l) = [l.getLast h]
theorem List.drop_append_eq_append_drop {α : Type u_1} {l₁ l₂ : List α} {i : Nat} :
drop i (l₁ ++ l₂) = drop i l₁ ++ drop (i - l₁.length) l₂

Dropping the elements up to i in l₁ ++ l₂ is the same as dropping the elements up to i in l₁, dropping the elements up to i - l₁.length in l₂, and appending them.

theorem List.drop_append_of_le_length {α : Type u_1} {l₁ l₂ : List α} {i : Nat} (h : i l₁.length) :
drop i (l₁ ++ l₂) = drop i l₁ ++ l₂
@[simp]
theorem List.drop_append {α : Type u_1} {l₁ l₂ : List α} (i : Nat) :
drop (l₁.length + i) (l₁ ++ l₂) = drop i l₂

Dropping the elements up to l₁.length + i in l₁ + l₂ is the same as dropping the elements up to i in l₂.

theorem List.set_eq_take_append_cons_drop {α : Type u_1} {l : List α} {i : Nat} {a : α} :
l.set i a = if i < l.length then take i l ++ a :: drop (i + 1) l else l
theorem List.drop_set_of_lt {α : Type u_1} {a : α} {i j : Nat} {l : List α} (hnm : i < j) :
drop j (l.set i a) = drop j l
theorem List.drop_take {α : Type u_1} {i j : Nat} {l : List α} :
drop i (take j l) = take (j - i) (drop i l)
@[simp]
theorem List.drop_take_self {i : Nat} {α✝ : Type u_1} {l : List α✝} :
drop i (take i l) = []
theorem List.take_reverse {α : Type u_1} {xs : List α} {i : Nat} :
take i xs.reverse = (drop (xs.length - i) xs).reverse
theorem List.drop_reverse {α : Type u_1} {xs : List α} {i : Nat} :
drop i xs.reverse = (take (xs.length - i) xs).reverse
theorem List.reverse_take {α : Type u_1} {l : List α} {i : Nat} :
(take i l).reverse = drop (l.length - i) l.reverse
theorem List.reverse_drop {α : Type u_1} {l : List α} {i : Nat} :
(drop i l).reverse = take (l.length - i) l.reverse
theorem List.take_add_one {α : Type u_1} {l : List α} {i : Nat} :
take (i + 1) l = take i l ++ l[i]?.toList
theorem List.drop_eq_getElem?_toList_append {α : Type u_1} {l : List α} {i : Nat} :
drop i l = l[i]?.toList ++ drop (i + 1) l
theorem List.drop_sub_one {α : Type u_1} {l : List α} {i : Nat} (h : 0 < i) :
drop (i - 1) l = l[i - 1]?.toList ++ drop i l

findIdx #

theorem List.false_of_mem_take_findIdx {α : Type u_1} {x : α} {xs : List α} {p : αBool} (h : x take (findIdx p xs) xs) :
p x = false
@[simp]
theorem List.findIdx_take {α : Type u_1} {xs : List α} {i : Nat} {p : αBool} :
findIdx p (take i xs) = min i (findIdx p xs)
@[simp]
theorem List.min_findIdx_findIdx {α : Type u_1} {xs : List α} {p q : αBool} :
min (findIdx p xs) (findIdx q xs) = findIdx (fun (a : α) => p a || q a) xs

findIdx? #

@[simp]
theorem List.findIdx?_take {α : Type u_1} {xs : List α} {i : Nat} {p : αBool} :
findIdx? p (take i xs) = (findIdx? p xs).bind (Option.guard fun (j : Nat) => j < i)

takeWhile #

theorem List.takeWhile_eq_take_findIdx_not {α : Type u_1} {xs : List α} {p : αBool} :
takeWhile p xs = take (findIdx (fun (a : α) => !p a) xs) xs
theorem List.dropWhile_eq_drop_findIdx_not {α : Type u_1} {xs : List α} {p : αBool} :
dropWhile p xs = drop (findIdx (fun (a : α) => !p a) xs) xs

rotateLeft #

@[simp]
theorem List.rotateLeft_replicate {α : Type u_1} {m n : Nat} {a : α} :

rotateRight #

@[simp]
theorem List.rotateRight_replicate {α : Type u_1} {m n : Nat} {a : α} :

zipWith #

@[simp]
theorem List.length_zipWith {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f : αβγ} {l₁ : List α} {l₂ : List β} :
(zipWith f l₁ l₂).length = min l₁.length l₂.length
theorem List.lt_length_left_of_zipWith {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f : αβγ} {i : Nat} {l : List α} {l' : List β} (h : i < (zipWith f l l').length) :
i < l.length
theorem List.lt_length_right_of_zipWith {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f : αβγ} {i : Nat} {l : List α} {l' : List β} (h : i < (zipWith f l l').length) :
i < l'.length
@[simp]
theorem List.getElem_zipWith {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f : αβγ} {l : List α} {l' : List β} {i : Nat} {h : i < (zipWith f l l').length} :
(zipWith f l l')[i] = f l[i] l'[i]
theorem List.zipWith_eq_zipWith_take_min {α : Type u_1} {β : Type u_2} {α✝ : Type u_3} {f : αβα✝} {l₁ : List α} {l₂ : List β} :
zipWith f l₁ l₂ = zipWith f (take (min l₁.length l₂.length) l₁) (take (min l₁.length l₂.length) l₂)
theorem List.reverse_zipWith {α✝ : Type u_1} {α✝¹ : Type u_2} {α✝² : Type u_3} {f : α✝α✝¹α✝²} {l : List α✝} {l' : List α✝¹} (h : l.length = l'.length) :
@[simp]
theorem List.zipWith_replicate {α : Type u_1} {β : Type u_2} {α✝ : Type u_3} {f : αβα✝} {a : α} {b : β} {m n : Nat} :
zipWith f (replicate m a) (replicate n b) = replicate (min m n) (f a b)

zip #

@[simp]
theorem List.length_zip {α : Type u_1} {β : Type u_2} {l₁ : List α} {l₂ : List β} :
(l₁.zip l₂).length = min l₁.length l₂.length
theorem List.lt_length_left_of_zip {α : Type u_1} {β : Type u_2} {i : Nat} {l : List α} {l' : List β} (h : i < (l.zip l').length) :
i < l.length
theorem List.lt_length_right_of_zip {α : Type u_1} {β : Type u_2} {i : Nat} {l : List α} {l' : List β} (h : i < (l.zip l').length) :
i < l'.length
@[simp]
theorem List.getElem_zip {α : Type u_1} {β : Type u_2} {l : List α} {l' : List β} {i : Nat} {h : i < (l.zip l').length} :
(l.zip l')[i] = (l[i], l'[i])
theorem List.zip_eq_zip_take_min {α : Type u_1} {β : Type u_2} {l₁ : List α} {l₂ : List β} :
l₁.zip l₂ = (take (min l₁.length l₂.length) l₁).zip (take (min l₁.length l₂.length) l₂)
@[simp]
theorem List.zip_replicate {α : Type u_1} {β : Type u_2} {a : α} {b : β} {m n : Nat} :
(replicate m a).zip (replicate n b) = replicate (min m n) (a, b)