Documentation

Init.Data.List.Find

Lemmas about List.findSome?, List.find?, List.findIdx, List.findIdx?, List.idxOf, and List.lookup.

findSome? #

@[simp]
theorem List.findSome?_cons_of_isSome {α✝ : Type u_1} {α✝¹ : Type u_2} {f : α✝Option α✝¹} {a : α✝} {l : List α✝} (h : (f a).isSome = true) :
findSome? f (a :: l) = f a
@[simp]
theorem List.findSome?_cons_of_isNone {α✝ : Type u_1} {α✝¹ : Type u_2} {f : α✝Option α✝¹} {a : α✝} {l : List α✝} (h : (f a).isNone = true) :
findSome? f (a :: l) = findSome? f l
theorem List.exists_of_findSome?_eq_some {α : Type u_1} {β : Type u_2} {b : β} {l : List α} {f : αOption β} (w : findSome? f l = some b) :
(a : α), a l f a = some b
@[simp]
theorem List.findSome?_eq_none_iff {α✝ : Type u_1} {α✝¹ : Type u_2} {p : α✝Option α✝¹} {l : List α✝} :
findSome? p l = none ∀ (x : α✝), x lp x = none
@[reducible, inline, deprecated List.findSome?_eq_none_iff (since := "2024-09-05")]
abbrev List.findSome?_eq_none {α✝ : Type u_1} {α✝¹ : Type u_2} {p : α✝Option α✝¹} {l : List α✝} :
findSome? p l = none ∀ (x : α✝), x lp x = none
Equations
@[simp]
theorem List.findSome?_isSome_iff {α : Type u_1} {β : Type u_2} {f : αOption β} {l : List α} :
(findSome? f l).isSome = true (x : α), x l (f x).isSome = true
theorem List.findSome?_eq_some_iff {α : Type u_1} {β : Type u_2} {f : αOption β} {l : List α} {b : β} :
findSome? f l = some b (l₁ : List α), (a : α), (l₂ : List α), l = l₁ ++ a :: l₂ f a = some b ∀ (x : α), x l₁f x = none
@[simp]
theorem List.findSome?_guard {α : Type u_1} {p : αBool} {l : List α} :
findSome? (Option.guard fun (x : α) => p x = true) l = find? p l
theorem List.find?_eq_findSome?_guard {α : Type u_1} {p : αBool} {l : List α} :
find? p l = findSome? (Option.guard fun (x : α) => p x = true) l
@[simp]
theorem List.head?_filterMap {α : Type u_1} {β : Type u_2} {f : αOption β} {l : List α} :
@[simp]
theorem List.head_filterMap {α : Type u_1} {β : Type u_2} {f : αOption β} {l : List α} (h : filterMap f l []) :
(filterMap f l).head h = (findSome? f l).get
@[simp]
theorem List.getLast?_filterMap {α : Type u_1} {β : Type u_2} {f : αOption β} {l : List α} :
@[simp]
theorem List.getLast_filterMap {α : Type u_1} {β : Type u_2} {f : αOption β} {l : List α} (h : filterMap f l []) :
@[simp]
theorem List.map_findSome? {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f : αOption β} {g : βγ} {l : List α} :
theorem List.findSome?_map {β : Type u_1} {γ : Type u_2} {α✝ : Type u_3} {p : γOption α✝} {f : βγ} {l : List β} :
findSome? p (map f l) = findSome? (p f) l
theorem List.findSome?_append {α : Type u_1} {α✝ : Type u_2} {f : αOption α✝} {l₁ l₂ : List α} :
findSome? f (l₁ ++ l₂) = (findSome? f l₁).or (findSome? f l₂)
theorem List.head_flatten {α : Type u_1} {L : List (List α)} (h : (l : List α), l L l []) :
L.flatten.head = (findSome? (fun (l : List α) => l.head?) L).get
theorem List.getLast_flatten {α : Type u_1} {L : List (List α)} (h : (l : List α), l L l []) :
L.flatten.getLast = (findSome? (fun (l : List α) => l.getLast?) L.reverse).get
theorem List.findSome?_replicate {α✝ : Type u_1} {α✝¹ : Type u_2} {f : α✝Option α✝¹} {n : Nat} {a : α✝} :
findSome? f (replicate n a) = if n = 0 then none else f a
@[simp]
theorem List.findSome?_replicate_of_pos {n : Nat} {α✝ : Type u_1} {α✝¹ : Type u_2} {f : α✝Option α✝¹} {a : α✝} (h : 0 < n) :
findSome? f (replicate n a) = f a
@[simp]
theorem List.findSome?_replicate_of_isSome {α✝ : Type u_1} {α✝¹ : Type u_2} {f : α✝Option α✝¹} {n : Nat} {a : α✝} :
(f a).isSome = truefindSome? f (replicate n a) = if n = 0 then none else f a
@[simp]
theorem List.findSome?_replicate_of_isNone {α✝ : Type u_1} {α✝¹ : Type u_2} {f : α✝Option α✝¹} {n : Nat} {a : α✝} (h : (f a).isNone = true) :
theorem List.Sublist.findSome?_isSome {α : Type u_1} {α✝ : Type u_2} {f : αOption α✝} {l₁ l₂ : List α} (h : l₁.Sublist l₂) :
(findSome? f l₁).isSome = true(findSome? f l₂).isSome = true
theorem List.Sublist.findSome?_eq_none {α : Type u_1} {α✝ : Type u_2} {f : αOption α✝} {l₁ l₂ : List α} (h : l₁.Sublist l₂) :
findSome? f l₂ = nonefindSome? f l₁ = none
theorem List.IsPrefix.findSome?_eq_some {α : Type u_1} {β : Type u_2} {b : β} {l₁ l₂ : List α} {f : αOption β} (h : l₁ <+: l₂) :
findSome? f l₁ = some bfindSome? f l₂ = some b
theorem List.IsPrefix.findSome?_eq_none {α : Type u_1} {β : Type u_2} {l₁ l₂ : List α} {f : αOption β} (h : l₁ <+: l₂) :
findSome? f l₂ = nonefindSome? f l₁ = none
theorem List.IsSuffix.findSome?_eq_none {α : Type u_1} {β : Type u_2} {l₁ l₂ : List α} {f : αOption β} (h : l₁ <:+ l₂) :
findSome? f l₂ = nonefindSome? f l₁ = none
theorem List.IsInfix.findSome?_eq_none {α : Type u_1} {β : Type u_2} {l₁ l₂ : List α} {f : αOption β} (h : l₁ <:+: l₂) :
findSome? f l₂ = nonefindSome? f l₁ = none

find? #

@[simp]
theorem List.find?_singleton {α : Type u_1} {a : α} {p : αBool} :
@[simp]
theorem List.find?_cons_of_pos {α✝ : Type u_1} {p : α✝Bool} {a : α✝} {l : List α✝} (h : p a = true) :
find? p (a :: l) = some a
@[simp]
theorem List.find?_cons_of_neg {α✝ : Type u_1} {p : α✝Bool} {a : α✝} {l : List α✝} (h : ¬p a = true) :
find? p (a :: l) = find? p l
@[simp]
theorem List.find?_eq_none {α✝ : Type u_1} {p : α✝Bool} {l : List α✝} :
find? p l = none ∀ (x : α✝), x l¬p x = true
theorem List.find?_eq_some_iff_append {α✝ : Type u_1} {b : α✝} {p : α✝Bool} {xs : List α✝} :
find? p xs = some b p b = true (as : List α✝), (bs : List α✝), xs = as ++ b :: bs ∀ (a : α✝), a as → (!p a) = true
@[reducible, inline, deprecated List.find?_eq_some_iff_append (since := "2024-11-06")]
abbrev List.find?_eq_some {α✝ : Type u_1} {b : α✝} {p : α✝Bool} {xs : List α✝} :
find? p xs = some b p b = true (as : List α✝), (bs : List α✝), xs = as ++ b :: bs ∀ (a : α✝), a as → (!p a) = true
Equations
@[simp]
theorem List.find?_cons_eq_some {α✝ : Type u_1} {a : α✝} {xs : List α✝} {p : α✝Bool} {b : α✝} :
find? p (a :: xs) = some b p a = true a = b (!p a) = true find? p xs = some b
@[simp]
theorem List.find?_isSome {α : Type u_1} {xs : List α} {p : αBool} :
(find? p xs).isSome = true (x : α), x xs p x = true
theorem List.find?_some {α✝ : Type u_1} {p : α✝Bool} {a : α✝} {l : List α✝} :
find? p l = some ap a = true
theorem List.mem_of_find?_eq_some {α✝ : Type u_1} {p : α✝Bool} {a : α✝} {l : List α✝} :
find? p l = some aa l
theorem List.get_find?_mem {α : Type u_1} {xs : List α} {p : αBool} (h : (find? p xs).isSome = true) :
(find? p xs).get h xs
@[simp]
theorem List.find?_filter {α : Type u_1} {xs : List α} {p q : αBool} :
find? q (filter p xs) = find? (fun (a : α) => decide (p a = true q a = true)) xs
@[simp]
theorem List.head?_filter {α : Type u_1} {p : αBool} {l : List α} :
(filter p l).head? = find? p l
@[simp]
theorem List.head_filter {α : Type u_1} {p : αBool} {l : List α} (h : filter p l []) :
(filter p l).head h = (find? p l).get
@[simp]
theorem List.getLast?_filter {α : Type u_1} {p : αBool} {l : List α} :
@[simp]
theorem List.getLast_filter {α : Type u_1} {p : αBool} {l : List α} (h : filter p l []) :
(filter p l).getLast h = (find? p l.reverse).get
@[simp]
theorem List.find?_filterMap {α : Type u_1} {β : Type u_2} {xs : List α} {f : αOption β} {p : βBool} :
find? p (filterMap f xs) = (find? (fun (a : α) => Option.any p (f a)) xs).bind f
@[simp]
theorem List.find?_map {β : Type u_1} {α : Type u_2} {p : αBool} {f : βα} {l : List β} :
find? p (map f l) = Option.map f (find? (p f) l)
@[simp]
theorem List.find?_append {α : Type u_1} {p : αBool} {l₁ l₂ : List α} :
find? p (l₁ ++ l₂) = (find? p l₁).or (find? p l₂)
@[simp]
theorem List.find?_flatten {α : Type u_1} {xss : List (List α)} {p : αBool} :
find? p xss.flatten = findSome? (fun (x : List α) => find? p x) xss
theorem List.find?_flatten_eq_none_iff {α : Type u_1} {xs : List (List α)} {p : αBool} :
find? p xs.flatten = none ∀ (ys : List α), ys xs∀ (x : α), x ys → (!p x) = true
@[reducible, inline, deprecated List.find?_flatten_eq_none_iff (since := "2025-02-03")]
abbrev List.find?_flatten_eq_none {α : Type u_1} {xs : List (List α)} {p : αBool} :
find? p xs.flatten = none ∀ (ys : List α), ys xs∀ (x : α), x ys → (!p x) = true
Equations
theorem List.find?_flatten_eq_some_iff {α : Type u_1} {xs : List (List α)} {p : αBool} {a : α} :
find? p xs.flatten = some a p a = true (as : List (List α)), (ys : List α), (zs : List α), (bs : List (List α)), xs = as ++ (ys ++ a :: zs) :: bs (∀ (l : List α), l as∀ (x : α), x l → (!p x) = true) ∀ (x : α), x ys → (!p x) = true

If find? p returns some a from xs.flatten, then p a holds, and some list in xs contains a, and no earlier element of that list satisfies p. Moreover, no earlier list in xs has an element satisfying p.

@[reducible, inline, deprecated List.find?_flatten_eq_some_iff (since := "2025-02-03")]
abbrev List.find?_flatten_eq_some {α : Type u_1} {xs : List (List α)} {p : αBool} {a : α} :
find? p xs.flatten = some a p a = true (as : List (List α)), (ys : List α), (zs : List α), (bs : List (List α)), xs = as ++ (ys ++ a :: zs) :: bs (∀ (l : List α), l as∀ (x : α), x l → (!p x) = true) ∀ (x : α), x ys → (!p x) = true
Equations
@[simp]
theorem List.find?_flatMap {α : Type u_1} {β : Type u_2} {xs : List α} {f : αList β} {p : βBool} :
find? p (flatMap f xs) = findSome? (fun (x : α) => find? p (f x)) xs
@[reducible, inline, deprecated List.find?_flatMap (since := "2024-10-16")]
abbrev List.find?_bind {α : Type u_1} {β : Type u_2} {xs : List α} {f : αList β} {p : βBool} :
find? p (flatMap f xs) = findSome? (fun (x : α) => find? p (f x)) xs
Equations
theorem List.find?_flatMap_eq_none_iff {α : Type u_1} {β : Type u_2} {xs : List α} {f : αList β} {p : βBool} :
find? p (flatMap f xs) = none ∀ (x : α), x xs∀ (y : β), y f x → (!p y) = true
@[reducible, inline, deprecated List.find?_flatMap_eq_none_iff (since := "2024-10-16")]
abbrev List.find?_flatMap_eq_none {α : Type u_1} {β : Type u_2} {xs : List α} {f : αList β} {p : βBool} :
find? p (flatMap f xs) = none ∀ (x : α), x xs∀ (y : β), y f x → (!p y) = true
Equations
@[reducible, inline, deprecated List.find?_flatMap_eq_none (since := "2024-10-16")]
abbrev List.find?_bind_eq_none {α : Type u_1} {β : Type u_2} {xs : List α} {f : αList β} {p : βBool} :
find? p (flatMap f xs) = none ∀ (x : α), x xs∀ (y : β), y f x → (!p y) = true
Equations
theorem List.find?_replicate {α✝ : Type u_1} {p : α✝Bool} {n : Nat} {a : α✝} :
@[simp]
theorem List.find?_replicate_of_length_pos {n : Nat} {α✝ : Type u_1} {p : α✝Bool} {a : α✝} (h : 0 < n) :
@[simp]
theorem List.find?_replicate_of_pos {α✝ : Type u_1} {p : α✝Bool} {n : Nat} {a : α✝} (h : p a = true) :
@[simp]
theorem List.find?_replicate_of_neg {α✝ : Type u_1} {p : α✝Bool} {n : Nat} {a : α✝} (h : ¬p a = true) :
theorem List.find?_replicate_eq_none_iff {α : Type u_1} {n : Nat} {a : α} {p : αBool} :
find? p (replicate n a) = none n = 0 (!p a) = true
@[reducible, inline, deprecated List.find?_replicate_eq_none_iff (since := "2025-02-03")]
abbrev List.find?_replicate_eq_none {α : Type u_1} {n : Nat} {a : α} {p : αBool} :
find? p (replicate n a) = none n = 0 (!p a) = true
Equations
@[simp]
theorem List.find?_replicate_eq_some_iff {α : Type u_1} {n : Nat} {a b : α} {p : αBool} :
find? p (replicate n a) = some b n 0 p a = true a = b
@[reducible, inline, deprecated List.find?_replicate_eq_some_iff (since := "2025-02-03")]
abbrev List.find?_replicate_eq_some {α : Type u_1} {n : Nat} {a b : α} {p : αBool} :
find? p (replicate n a) = some b n 0 p a = true a = b
Equations
@[simp]
theorem List.get_find?_replicate {α : Type u_1} {n : Nat} {a : α} {p : αBool} (h : (find? p (replicate n a)).isSome = true) :
(find? p (replicate n a)).get h = a
theorem List.Sublist.find?_isSome {α : Type u_1} {p : αBool} {l₁ l₂ : List α} (h : l₁.Sublist l₂) :
(find? p l₁).isSome = true(find? p l₂).isSome = true
theorem List.Sublist.find?_eq_none {α : Type u_1} {p : αBool} {l₁ l₂ : List α} (h : l₁.Sublist l₂) :
find? p l₂ = nonefind? p l₁ = none
theorem List.IsPrefix.find?_eq_some {α : Type u_1} {b : α} {l₁ l₂ : List α} {p : αBool} (h : l₁ <+: l₂) :
find? p l₁ = some bfind? p l₂ = some b
theorem List.IsPrefix.find?_eq_none {α : Type u_1} {l₁ l₂ : List α} {p : αBool} (h : l₁ <+: l₂) :
find? p l₂ = nonefind? p l₁ = none
theorem List.IsSuffix.find?_eq_none {α : Type u_1} {l₁ l₂ : List α} {p : αBool} (h : l₁ <:+ l₂) :
find? p l₂ = nonefind? p l₁ = none
theorem List.IsInfix.find?_eq_none {α : Type u_1} {l₁ l₂ : List α} {p : αBool} (h : l₁ <:+: l₂) :
find? p l₂ = nonefind? p l₁ = none
theorem List.find?_pmap {α : Type u_1} {β : Type u_2} {P : αProp} {f : (a : α) → P aβ} {xs : List α} (H : ∀ (a : α), a xsP a) {p : βBool} :
find? p (pmap f xs H) = Option.map (fun (x : { x : α // x xs }) => match x with | a, m => f a ) (find? (fun (x : { x : α // x xs }) => match x with | a, m => p (f a )) xs.attach)

findIdx? (preliminary lemmas) #

@[simp]
theorem List.findIdx?_nil {α : Type u_1} {p : αBool} :
@[simp]
theorem List.findIdx?_cons {α✝ : Type u_1} {x : α✝} {xs : List α✝} {p : α✝Bool} :
findIdx? p (x :: xs) = if p x = true then some 0 else Option.map (fun (i : Nat) => i + 1) (findIdx? p xs)

findIdx #

theorem List.findIdx_cons {α : Type u_1} {p : αBool} {b : α} {l : List α} :
findIdx p (b :: l) = bif p b then 0 else findIdx p l + 1
theorem List.findIdx_cons.findIdx_go_succ {α : Type u_1} (p : αBool) (l : List α) (n : Nat) :
findIdx.go p l (n + 1) = findIdx.go p l n + 1
theorem List.findIdx_of_getElem?_eq_some {α : Type u_1} {p : αBool} {y : α} {xs : List α} (w : xs[findIdx p xs]? = some y) :
p y = true
theorem List.findIdx_getElem {α : Type u_1} {p : αBool} {xs : List α} {w : findIdx p xs < xs.length} :
p xs[findIdx p xs] = true
theorem List.findIdx_lt_length_of_exists {α : Type u_1} {p : αBool} {xs : List α} (h : (x : α), x xs p x = true) :
findIdx p xs < xs.length
theorem List.findIdx_getElem?_eq_getElem_of_exists {α : Type u_1} {p : αBool} {xs : List α} (h : (x : α), x xs p x = true) :
xs[findIdx p xs]? = some xs[findIdx p xs]
@[simp]
theorem List.findIdx_eq_length {α : Type u_1} {p : αBool} {xs : List α} :
findIdx p xs = xs.length ∀ (x : α), x xsp x = false
theorem List.findIdx_eq_length_of_false {α : Type u_1} {p : αBool} {xs : List α} (h : ∀ (x : α), x xsp x = false) :
findIdx p xs = xs.length
theorem List.findIdx_le_length {α : Type u_1} {p : αBool} {xs : List α} :
@[simp]
theorem List.findIdx_lt_length {α : Type u_1} {p : αBool} {xs : List α} :
findIdx p xs < xs.length (x : α), x xs p x = true
theorem List.not_of_lt_findIdx {α : Type u_1} {p : αBool} {xs : List α} {i : Nat} (h : i < findIdx p xs) :
p xs[i] = false

p does not hold for elements with indices less than xs.findIdx p.

theorem List.le_findIdx_of_not {α : Type u_1} {p : αBool} {xs : List α} {i : Nat} (h : i < xs.length) (h2 : ∀ (j : Nat) (hji : j < i), p xs[j] = false) :
i findIdx p xs

If ¬ p xs[j] for all j < i, then i ≤ xs.findIdx p.

theorem List.lt_findIdx_of_not {α : Type u_1} {p : αBool} {xs : List α} {i : Nat} (h : i < xs.length) (h2 : ∀ (j : Nat) (hji : j i), ¬p xs[j] = true) :
i < findIdx p xs

If ¬ p xs[j] for all j ≤ i, then i < xs.findIdx p.

theorem List.findIdx_eq {α : Type u_1} {p : αBool} {xs : List α} {i : Nat} (h : i < xs.length) :
findIdx p xs = i p xs[i] = true ∀ (j : Nat) (hji : j < i), p xs[j] = false

xs.findIdx p = i iff p xs[i] and ¬ p xs [j] for all j < i.

theorem List.findIdx_append {α : Type u_1} {p : αBool} {l₁ l₂ : List α} :
findIdx p (l₁ ++ l₂) = if findIdx p l₁ < l₁.length then findIdx p l₁ else findIdx p l₂ + l₁.length
theorem List.IsPrefix.findIdx_le {α : Type u_1} {l₁ l₂ : List α} {p : αBool} (h : l₁ <+: l₂) :
findIdx p l₁ findIdx p l₂
theorem List.IsPrefix.findIdx_eq_of_findIdx_lt_length {α : Type u_1} {l₁ l₂ : List α} {p : αBool} (h : l₁ <+: l₂) (lt : findIdx p l₁ < l₁.length) :
findIdx p l₂ = findIdx p l₁
theorem List.findIdx_le_findIdx {α : Type u_1} {l : List α} {p q : αBool} (h : ∀ (x : α), x lp x = trueq x = true) :
@[simp]
theorem List.findIdx_subtype {α : Type u_1} {p : αProp} {l : List { x : α // p x }} {f : { x : α // p x }Bool} {g : αBool} (hf : ∀ (x : α) (h : p x), f x, h = g x) :

findIdx? #

@[simp]
theorem List.findIdx?_eq_none_iff {α : Type u_1} {xs : List α} {p : αBool} :
findIdx? p xs = none ∀ (x : α), x xsp x = false
theorem List.findIdx?_isSome {α : Type u_1} {xs : List α} {p : αBool} :
(findIdx? p xs).isSome = xs.any p
theorem List.findIdx?_isNone {α : Type u_1} {xs : List α} {p : αBool} :
(findIdx? p xs).isNone = xs.all fun (x : α) => decide ¬p x = true
theorem List.findIdx?_eq_some_iff_findIdx_eq {α : Type u_1} {xs : List α} {p : αBool} {i : Nat} :
findIdx? p xs = some i i < xs.length findIdx p xs = i
theorem List.findIdx?_eq_some_of_exists {α : Type u_1} {xs : List α} {p : αBool} (h : (x : α), x xs p x = true) :
findIdx? p xs = some (findIdx p xs)
theorem List.findIdx?_eq_none_iff_findIdx_eq {α : Type u_1} {xs : List α} {p : αBool} :
theorem List.findIdx?_eq_guard_findIdx_lt {α : Type u_1} {xs : List α} {p : αBool} :
findIdx? p xs = Option.guard (fun (i : Nat) => i < xs.length) (findIdx p xs)
theorem List.findIdx?_eq_some_iff_getElem {α : Type u_1} {xs : List α} {p : αBool} {i : Nat} :
findIdx? p xs = some i (h : i < xs.length), p xs[i] = true ∀ (j : Nat) (hji : j < i), ¬p xs[j] = true
theorem List.of_findIdx?_eq_some {α : Type u_1} {i : Nat} {xs : List α} {p : αBool} (w : findIdx? p xs = some i) :
match xs[i]? with | some a => p a = true | none => false = true
@[reducible, inline, deprecated List.of_findIdx?_eq_some (since := "2025-02-02")]
abbrev List.findIdx?_of_eq_some {α : Type u_1} {i : Nat} {xs : List α} {p : αBool} (w : findIdx? p xs = some i) :
match xs[i]? with | some a => p a = true | none => false = true
Equations
theorem List.of_findIdx?_eq_none {α : Type u_1} {xs : List α} {p : αBool} (w : findIdx? p xs = none) (i : Nat) :
match xs[i]? with | some a => ¬p a = true | none => true = true
@[reducible, inline, deprecated List.of_findIdx?_eq_none (since := "2025-02-02")]
abbrev List.findIdx?_of_eq_none {α : Type u_1} {xs : List α} {p : αBool} (w : findIdx? p xs = none) (i : Nat) :
match xs[i]? with | some a => ¬p a = true | none => true = true
Equations
@[simp]
theorem List.findIdx?_map {β : Type u_1} {α : Type u_2} {p : αBool} {f : βα} {l : List β} :
findIdx? p (map f l) = findIdx? (p f) l
@[simp]
theorem List.findIdx?_append {α : Type u_1} {xs ys : List α} {p : αBool} :
findIdx? p (xs ++ ys) = (findIdx? p xs).or (Option.map (fun (i : Nat) => i + xs.length) (findIdx? p ys))
theorem List.findIdx?_flatten {α : Type u_1} {l : List (List α)} {p : αBool} :
findIdx? p l.flatten = Option.map (fun (i : Nat) => (map length (take i l)).sum + (Option.map (fun (xs : List α) => findIdx p xs) l[i]?).getD 0) (findIdx? (fun (x : List α) => x.any p) l)
@[simp]
theorem List.findIdx?_replicate {n : Nat} {α✝ : Type u_1} {a : α✝} {p : α✝Bool} :
theorem List.findIdx?_eq_findSome?_zipIdx {α : Type u_1} {xs : List α} {p : αBool} :
findIdx? p xs = findSome? (fun (x : α × Nat) => match x with | (a, i) => if p a = true then some i else none) xs.zipIdx
theorem List.findIdx?_eq_fst_find?_zipIdx {α : Type u_1} {xs : List α} {p : αBool} :
findIdx? p xs = Option.map (fun (x : α × Nat) => x.snd) (find? (fun (x : α × Nat) => match x with | (x, snd) => p x) xs.zipIdx)
theorem List.findIdx?_eq_none_of_findIdx?_eq_none {α : Type u_1} {xs : List α} {p q : αBool} (w : ∀ (x : α), x xsp x = trueq x = true) :
findIdx? q xs = nonefindIdx? p xs = none
theorem List.Sublist.findIdx?_isSome {α : Type u_1} {p : αBool} {l₁ l₂ : List α} (h : l₁.Sublist l₂) :
(findIdx? p l₁).isSome = true(findIdx? p l₂).isSome = true
theorem List.Sublist.findIdx?_eq_none {α : Type u_1} {p : αBool} {l₁ l₂ : List α} (h : l₁.Sublist l₂) :
findIdx? p l₂ = nonefindIdx? p l₁ = none
theorem List.IsPrefix.findIdx?_eq_some {α : Type u_1} {i : Nat} {l₁ l₂ : List α} {p : αBool} (h : l₁ <+: l₂) :
findIdx? p l₁ = some ifindIdx? p l₂ = some i
theorem List.IsPrefix.findIdx?_eq_none {α : Type u_1} {l₁ l₂ : List α} {p : αBool} (h : l₁ <+: l₂) :
findIdx? p l₂ = nonefindIdx? p l₁ = none
theorem List.IsSuffix.findIdx?_eq_none {α : Type u_1} {l₁ l₂ : List α} {p : αBool} (h : l₁ <:+ l₂) :
findIdx? p l₂ = nonefindIdx? p l₁ = none
theorem List.IsInfix.findIdx?_eq_none {α : Type u_1} {l₁ l₂ : List α} {p : αBool} (h : l₁ <:+: l₂) :
findIdx? p l₂ = nonefindIdx? p l₁ = none
theorem List.findIdx_eq_getD_findIdx? {α : Type u_1} {xs : List α} {p : αBool} :
findIdx p xs = (findIdx? p xs).getD xs.length
@[simp]
theorem List.findIdx?_subtype {α : Type u_1} {p : αProp} {l : List { x : α // p x }} {f : { x : α // p x }Bool} {g : αBool} (hf : ∀ (x : α) (h : p x), f x, h = g x) :

findFinIdx? #

@[simp]
theorem List.findFinIdx?_nil {α : Type u_1} {p : αBool} :
@[irreducible]
theorem List.findIdx?_go_eq_map_findFinIdx?_go_val {α : Type u_1} {l xs : List α} {p : αBool} {i : Nat} {h : xs.length + i = l.length} :
findIdx?.go p xs i = Option.map (fun (x : Fin l.length) => x) (findFinIdx?.go p l xs i h)
theorem List.findIdx?_eq_map_findFinIdx?_val {α : Type u_1} {xs : List α} {p : αBool} :
findIdx? p xs = Option.map (fun (x : Fin xs.length) => x) (findFinIdx? p xs)
theorem List.findFinIdx?_eq_pmap_findIdx? {α : Type u_1} {xs : List α} {p : αBool} :
findFinIdx? p xs = Option.pmap (fun (i : Nat) (m : i findIdx? p xs) => i, ) (findIdx? p xs)
@[simp]
theorem List.findFinIdx?_cons {α : Type u_1} {p : αBool} {x : α} {xs : List α} :
@[simp]
theorem List.findFinIdx?_eq_none_iff {α : Type u_1} {l : List α} {p : αBool} :
findFinIdx? p l = none ∀ (x : α), x l¬p x = true
@[simp]
theorem List.findFinIdx?_eq_some_iff {α : Type u_1} {xs : List α} {p : αBool} {i : Fin xs.length} :
findFinIdx? p xs = some i p xs[i] = true ∀ (j : Fin xs.length) (hji : j < i), ¬p xs[j] = true
@[simp]
theorem List.findFinIdx?_subtype {α : Type u_1} {p : αProp} {l : List { x : α // p x }} {f : { x : α // p x }Bool} {g : αBool} (hf : ∀ (x : α) (h : p x), f x, h = g x) :

idxOf #

The verification API for idxOf is still incomplete. The lemmas below should be made consistent with those for findIdx (and proved using them).

theorem List.idxOf_cons {α : Type u_1} {x : α} {xs : List α} {y : α} [BEq α] :
idxOf y (x :: xs) = bif x == y then 0 else idxOf y xs + 1
@[reducible, inline, deprecated List.idxOf_cons (since := "2025-01-29")]
abbrev List.indexOf_cons {α : Type u_1} {x : α} {xs : List α} {y : α} [BEq α] :
idxOf y (x :: xs) = bif x == y then 0 else idxOf y xs + 1
Equations
@[simp]
theorem List.idxOf_cons_self {α : Type u_1} {a : α} [BEq α] [ReflBEq α] {l : List α} :
idxOf a (a :: l) = 0
@[reducible, inline, deprecated List.idxOf_cons_self (since := "2025-01-29")]
abbrev List.indexOf_cons_self {α : Type u_1} {a : α} [BEq α] [ReflBEq α] {l : List α} :
idxOf a (a :: l) = 0
Equations
theorem List.idxOf_append {α : Type u_1} [BEq α] [LawfulBEq α] {l₁ l₂ : List α} {a : α} :
idxOf a (l₁ ++ l₂) = if a l₁ then idxOf a l₁ else idxOf a l₂ + l₁.length
@[reducible, inline, deprecated List.idxOf_append (since := "2025-01-29")]
abbrev List.indexOf_append {α : Type u_1} [BEq α] [LawfulBEq α] {l₁ l₂ : List α} {a : α} :
idxOf a (l₁ ++ l₂) = if a l₁ then idxOf a l₁ else idxOf a l₂ + l₁.length
Equations
theorem List.idxOf_eq_length {α : Type u_1} {a : α} [BEq α] [LawfulBEq α] {l : List α} (h : ¬a l) :
idxOf a l = l.length
@[reducible, inline, deprecated List.idxOf_eq_length (since := "2025-01-29")]
abbrev List.indexOf_eq_length {α : Type u_1} {a : α} [BEq α] [LawfulBEq α] {l : List α} (h : ¬a l) :
idxOf a l = l.length
Equations
theorem List.idxOf_lt_length {α : Type u_1} {a : α} [BEq α] [LawfulBEq α] {l : List α} (h : a l) :
idxOf a l < l.length
@[reducible, inline, deprecated List.idxOf_lt_length (since := "2025-01-29")]
abbrev List.indexOf_lt_length {α : Type u_1} {a : α} [BEq α] [LawfulBEq α] {l : List α} (h : a l) :
idxOf a l < l.length
Equations

finIdxOf? #

The verification API for finIdxOf? is still incomplete. The lemmas below should be made consistent with those for findFinIdx? (and proved using them).

theorem List.idxOf?_eq_map_finIdxOf?_val {α : Type u_1} [BEq α] {xs : List α} {a : α} :
idxOf? a xs = Option.map (fun (x : Fin xs.length) => x) (finIdxOf? a xs)
@[simp]
theorem List.finIdxOf?_nil {α : Type u_1} {a : α} [BEq α] :
@[simp]
theorem List.finIdxOf?_cons {α : Type u_1} {b : α} [BEq α] {a : α} {xs : List α} :
finIdxOf? b (a :: xs) = if (a == b) = true then some 0, else Option.map (fun (x : Fin xs.length) => x.succ) (finIdxOf? b xs)
@[simp]
theorem List.finIdxOf?_eq_none_iff {α : Type u_1} [BEq α] [LawfulBEq α] {l : List α} {a : α} :
@[simp]
theorem List.finIdxOf?_eq_some_iff {α : Type u_1} [BEq α] [LawfulBEq α] {l : List α} {a : α} {i : Fin l.length} :
finIdxOf? a l = some i l[i] = a ∀ (j : Fin l.length), j < i¬l[j] = a

idxOf? #

The verification API for idxOf? is still incomplete. The lemmas below should be made consistent with those for findIdx? (and proved using them).

@[simp]
theorem List.idxOf?_nil {α : Type u_1} {a : α} [BEq α] :
theorem List.idxOf?_cons {α : Type u_1} [BEq α] {a : α} {xs : List α} {b : α} :
idxOf? b (a :: xs) = if (a == b) = true then some 0 else Option.map (fun (x : Nat) => x + 1) (idxOf? b xs)
@[simp]
theorem List.idxOf?_eq_none_iff {α : Type u_1} [BEq α] [LawfulBEq α] {l : List α} {a : α} :
@[reducible, inline, deprecated List.idxOf?_eq_none_iff (since := "2025-01-29")]
abbrev List.indexOf?_eq_none_iff {α : Type u_1} [BEq α] [LawfulBEq α] {l : List α} {a : α} :
Equations

lookup #

@[simp]
theorem List.lookup_cons_self {α : Type u_2} [BEq α] [LawfulBEq α] {β✝ : Type u_1} {b : β✝} {es : List (α × β✝)} {k : α} :
lookup k ((k, b) :: es) = some b
theorem List.lookup_eq_findSome? {α : Type u_2} [BEq α] [LawfulBEq α] {β : Type u_1} {l : List (α × β)} {k : α} :
lookup k l = findSome? (fun (p : α × β) => if (k == p.fst) = true then some p.snd else none) l
@[simp]
theorem List.lookup_eq_none_iff {α : Type u_2} [BEq α] [LawfulBEq α] {β : Type u_1} {l : List (α × β)} {k : α} :
lookup k l = none ∀ (p : α × β), p l → (k != p.fst) = true
@[simp]
theorem List.lookup_isSome_iff {α : Type u_2} [BEq α] [LawfulBEq α] {β : Type u_1} {l : List (α × β)} {k : α} :
(lookup k l).isSome = true (p : α × β), p l (k == p.fst) = true
theorem List.lookup_eq_some_iff {α : Type u_2} [BEq α] [LawfulBEq α] {β : Type u_1} {l : List (α × β)} {k : α} {b : β} :
lookup k l = some b (l₁ : List (α × β)), (l₂ : List (α × β)), l = l₁ ++ (k, b) :: l₂ ∀ (p : α × β), p l₁ → (k != p.fst) = true
theorem List.lookup_append {α : Type u_2} [BEq α] [LawfulBEq α] {β : Type u_1} {l₁ l₂ : List (α × β)} {k : α} :
lookup k (l₁ ++ l₂) = (lookup k l₁).or (lookup k l₂)
theorem List.lookup_replicate {α : Type u_2} [BEq α] [LawfulBEq α] {n : Nat} {a : α} {α✝ : Type u_1} {b : α✝} {k : α} :
theorem List.lookup_replicate_of_pos {α : Type u_2} [BEq α] [LawfulBEq α] {n : Nat} {a : α} {α✝ : Type u_1} {b : α✝} {k : α} (h : 0 < n) :
theorem List.lookup_replicate_self {α : Type u_2} [BEq α] [LawfulBEq α] {n : Nat} {α✝ : Type u_1} {b : α✝} {a : α} :
@[simp]
theorem List.lookup_replicate_self_of_pos {α : Type u_2} [BEq α] [LawfulBEq α] {n : Nat} {α✝ : Type u_1} {b : α✝} {a : α} (h : 0 < n) :
@[simp]
theorem List.lookup_replicate_ne {α : Type u_2} [BEq α] [LawfulBEq α] {a : α} {n : Nat} {α✝ : Type u_1} {b : α✝} {k : α} (h : (!k == a) = true) :
theorem List.Sublist.lookup_isSome {α : Type u_2} [BEq α] [LawfulBEq α] {β : Type u_1} {k : α} {l₁ l₂ : List (α × β)} (h : l₁.Sublist l₂) :
(lookup k l₁).isSome = true(lookup k l₂).isSome = true
theorem List.Sublist.lookup_eq_none {α : Type u_2} [BEq α] [LawfulBEq α] {β : Type u_1} {k : α} {l₁ l₂ : List (α × β)} (h : l₁.Sublist l₂) :
lookup k l₂ = nonelookup k l₁ = none
theorem List.IsPrefix.lookup_eq_some {α : Type u_2} [BEq α] [LawfulBEq α] {β : Type u_1} {k : α} {b : β} {l₁ l₂ : List (α × β)} (h : l₁ <+: l₂) :
lookup k l₁ = some blookup k l₂ = some b
theorem List.IsPrefix.lookup_eq_none {α : Type u_2} [BEq α] [LawfulBEq α] {β : Type u_1} {k : α} {l₁ l₂ : List (α × β)} (h : l₁ <+: l₂) :
lookup k l₂ = nonelookup k l₁ = none
theorem List.IsSuffix.lookup_eq_none {α : Type u_2} [BEq α] [LawfulBEq α] {β : Type u_1} {k : α} {l₁ l₂ : List (α × β)} (h : l₁ <:+ l₂) :
lookup k l₂ = nonelookup k l₁ = none
theorem List.IsInfix.lookup_eq_none {α : Type u_2} [BEq α] [LawfulBEq α] {β : Type u_1} {k : α} {l₁ l₂ : List (α × β)} (h : l₁ <:+: l₂) :
lookup k l₂ = nonelookup k l₁ = none

Deprecations #

@[reducible, inline, deprecated List.head_flatten (since := "2024-10-14")]
abbrev List.head_join {α : Type u_1} {L : List (List α)} (h : (l : List α), l L l []) :
L.flatten.head = (findSome? (fun (l : List α) => l.head?) L).get
Equations
@[reducible, inline, deprecated List.getLast_flatten (since := "2024-10-14")]
abbrev List.getLast_join {α : Type u_1} {L : List (List α)} (h : (l : List α), l L l []) :
L.flatten.getLast = (findSome? (fun (l : List α) => l.getLast?) L.reverse).get
Equations
@[reducible, inline, deprecated List.find?_flatten (since := "2024-10-14")]
abbrev List.find?_join {α : Type u_1} {xss : List (List α)} {p : αBool} :
find? p xss.flatten = findSome? (fun (x : List α) => find? p x) xss
Equations
@[reducible, inline, deprecated List.find?_flatten_eq_none (since := "2024-10-14")]
abbrev List.find?_join_eq_none {α : Type u_1} {xs : List (List α)} {p : αBool} :
find? p xs.flatten = none ∀ (ys : List α), ys xs∀ (x : α), x ys → (!p x) = true
Equations
@[reducible, inline, deprecated List.find?_flatten_eq_some (since := "2024-10-14")]
abbrev List.find?_join_eq_some {α : Type u_1} {xs : List (List α)} {p : αBool} {a : α} :
find? p xs.flatten = some a p a = true (as : List (List α)), (ys : List α), (zs : List α), (bs : List (List α)), xs = as ++ (ys ++ a :: zs) :: bs (∀ (l : List α), l as∀ (x : α), x l → (!p x) = true) ∀ (x : α), x ys → (!p x) = true
Equations
@[reducible, inline, deprecated List.findIdx?_flatten (since := "2024-10-14")]
abbrev List.findIdx?_join {α : Type u_1} {l : List (List α)} {p : αBool} :
findIdx? p l.flatten = Option.map (fun (i : Nat) => (map length (take i l)).sum + (Option.map (fun (xs : List α) => findIdx p xs) l[i]?).getD 0) (findIdx? (fun (x : List α) => x.any p) l)
Equations