Tree set lemmas #
This file contains lemmas about Std.Data.TreeSet
. Most of the lemmas require
TransCmp cmp
for the comparison function cmp
.
@[simp]
theorem
Std.TreeSet.insert_eq_insert
{α : Type u}
{cmp : α → α → Ordering}
{t : TreeSet α cmp}
{p : α}
:
theorem
Std.TreeSet.mem_of_mem_insert'
{α : Type u}
{cmp : α → α → Ordering}
{t : TreeSet α cmp}
[TransCmp cmp]
{k a : α}
:
This is a restatement of mem_of_mem_insert
that is written to exactly match the
proof obligation in the statement of get_insert
.
theorem
Std.TreeSet.get?_beq
{α : Type u}
{cmp : α → α → Ordering}
{t : TreeSet α cmp}
[TransCmp cmp]
{k : α}
:
@[simp]
theorem
Std.TreeSet.get_eq
{α : Type u}
{cmp : α → α → Ordering}
{t : TreeSet α cmp}
[TransCmp cmp]
[LawfulEqCmp cmp]
{k : α}
(h' : k ∈ t)
:
theorem
Std.TreeSet.getD_eq_of_mem
{α : Type u}
{cmp : α → α → Ordering}
{t : TreeSet α cmp}
[TransCmp cmp]
[LawfulEqCmp cmp]
{k fallback : α}
(h' : k ∈ t)
:
@[simp]
theorem
Std.TreeSet.containsThenInsert_fst
{α : Type u}
{cmp : α → α → Ordering}
{t : TreeSet α cmp}
[TransCmp cmp]
{k : α}
:
@[simp]
theorem
Std.TreeSet.containsThenInsert_snd
{α : Type u}
{cmp : α → α → Ordering}
{t : TreeSet α cmp}
[TransCmp cmp]
{k : α}
:
theorem
Std.TreeSet.distinct_toList
{α : Type u}
{cmp : α → α → Ordering}
{t : TreeSet α cmp}
[TransCmp cmp]
:
List.Pairwise (fun (a b : α) => ¬cmp a b = Ordering.eq) t.toList
theorem
Std.TreeSet.ordered_toList
{α : Type u}
{cmp : α → α → Ordering}
{t : TreeSet α cmp}
[TransCmp cmp]
:
List.Pairwise (fun (a b : α) => cmp a b = Ordering.lt) t.toList
theorem
Std.TreeSet.foldlM_eq_foldlM_toList
{α : Type u}
{cmp : α → α → Ordering}
{t : TreeSet α cmp}
{δ : Type w}
{m : Type w → Type w}
[Monad m]
[LawfulMonad m]
{f : δ → α → m δ}
{init : δ}
:
theorem
Std.TreeSet.foldl_eq_foldl_toList
{α : Type u}
{cmp : α → α → Ordering}
{t : TreeSet α cmp}
{δ : Type w}
{f : δ → α → δ}
{init : δ}
:
theorem
Std.TreeSet.foldrM_eq_foldrM_toList
{α : Type u}
{cmp : α → α → Ordering}
{t : TreeSet α cmp}
{δ : Type w}
{m : Type w → Type w}
[Monad m]
[LawfulMonad m]
{f : α → δ → m δ}
{init : δ}
:
theorem
Std.TreeSet.foldr_eq_foldr_toList
{α : Type u}
{cmp : α → α → Ordering}
{t : TreeSet α cmp}
{δ : Type w}
{f : α → δ → δ}
{init : δ}
:
@[simp]
theorem
Std.TreeSet.forIn_eq_forIn
{α : Type u}
{cmp : α → α → Ordering}
{t : TreeSet α cmp}
{δ : Type w}
{m : Type w → Type w}
[Monad m]
[LawfulMonad m]
{f : α → δ → m (ForInStep δ)}
{init : δ}
:
theorem
Std.TreeSet.forIn_eq_forIn_toList
{α : Type u}
{cmp : α → α → Ordering}
{t : TreeSet α cmp}
{δ : Type w}
{m : Type w → Type w}
[Monad m]
[LawfulMonad m]
{f : α → δ → m (ForInStep δ)}
{init : δ}
:
@[simp]
@[simp]
theorem
Std.TreeSet.insertMany_list_singleton
{α : Type u}
{cmp : α → α → Ordering}
{t : TreeSet α cmp}
{k : α}
:
theorem
Std.TreeSet.insertMany_cons
{α : Type u}
{cmp : α → α → Ordering}
{t : TreeSet α cmp}
{l : List α}
{k : α}
:
@[simp]
theorem
Std.TreeSet.contains_insertMany_list
{α : Type u}
{cmp : α → α → Ordering}
{t : TreeSet α cmp}
[TransCmp cmp]
[BEq α]
[LawfulBEqCmp cmp]
{l : List α}
{k : α}
:
theorem
Std.TreeSet.mem_of_mem_insertMany_list
{α : Type u}
{cmp : α → α → Ordering}
{t : TreeSet α cmp}
[TransCmp cmp]
[BEq α]
[LawfulBEqCmp cmp]
{l : List α}
{k : α}
(contains_eq_false : l.contains k = false)
:
k ∈ t.insertMany l → k ∈ t
theorem
Std.TreeSet.get?_insertMany_list_of_not_mem_of_mem
{α : Type u}
{cmp : α → α → Ordering}
{t : TreeSet α cmp}
[TransCmp cmp]
{l : List α}
{k k' : α}
(k_eq : cmp k k' = Ordering.eq)
(not_mem : ¬k ∈ t)
(distinct : List.Pairwise (fun (a b : α) => ¬cmp a b = Ordering.eq) l)
(mem : k ∈ l)
:
theorem
Std.TreeSet.get_insertMany_list_of_mem
{α : Type u}
{cmp : α → α → Ordering}
{t : TreeSet α cmp}
[TransCmp cmp]
{l : List α}
{k : α}
{h' : k ∈ t.insertMany l}
(contains : k ∈ t)
:
theorem
Std.TreeSet.get_insertMany_list_of_not_mem_of_mem
{α : Type u}
{cmp : α → α → Ordering}
{t : TreeSet α cmp}
[TransCmp cmp]
{l : List α}
{k k' : α}
(k_eq : cmp k k' = Ordering.eq)
{h' : k' ∈ t.insertMany l}
(not_mem : ¬k ∈ t)
(distinct : List.Pairwise (fun (a b : α) => ¬cmp a b = Ordering.eq) l)
(mem : k ∈ l)
:
theorem
Std.TreeSet.get!_insertMany_list_of_not_mem_of_mem
{α : Type u}
{cmp : α → α → Ordering}
{t : TreeSet α cmp}
[TransCmp cmp]
[Inhabited α]
{l : List α}
{k k' : α}
(k_eq : cmp k k' = Ordering.eq)
(not_mem : ¬k ∈ t)
(distinct : List.Pairwise (fun (a b : α) => ¬cmp a b = Ordering.eq) l)
(mem : k ∈ l)
:
theorem
Std.TreeSet.getD_insertMany_list_of_not_mem_of_mem
{α : Type u}
{cmp : α → α → Ordering}
{t : TreeSet α cmp}
[TransCmp cmp]
{l : List α}
{k k' fallback : α}
(k_eq : cmp k k' = Ordering.eq)
(not_mem : ¬k ∈ t)
(distinct : List.Pairwise (fun (a b : α) => ¬cmp a b = Ordering.eq) l)
(mem : k ∈ l)
:
theorem
Std.TreeSet.size_insertMany_list
{α : Type u}
{cmp : α → α → Ordering}
{t : TreeSet α cmp}
[TransCmp cmp]
[BEq α]
[LawfulBEqCmp cmp]
{l : List α}
(distinct : List.Pairwise (fun (a b : α) => ¬cmp a b = Ordering.eq) l)
:
theorem
Std.TreeSet.get?_ofList_of_mem
{α : Type u}
{cmp : α → α → Ordering}
[TransCmp cmp]
{l : List α}
{k k' : α}
(k_eq : cmp k k' = Ordering.eq)
(distinct : List.Pairwise (fun (a b : α) => ¬cmp a b = Ordering.eq) l)
(mem : k ∈ l)
:
theorem
Std.TreeSet.get_ofList_of_mem
{α : Type u}
{cmp : α → α → Ordering}
[TransCmp cmp]
{l : List α}
{k k' : α}
(k_eq : cmp k k' = Ordering.eq)
(distinct : List.Pairwise (fun (a b : α) => ¬cmp a b = Ordering.eq) l)
(mem : k ∈ l)
{h' : k' ∈ ofList l cmp}
:
theorem
Std.TreeSet.get!_ofList_of_mem
{α : Type u}
{cmp : α → α → Ordering}
[TransCmp cmp]
[Inhabited α]
{l : List α}
{k k' : α}
(k_eq : cmp k k' = Ordering.eq)
(distinct : List.Pairwise (fun (a b : α) => ¬cmp a b = Ordering.eq) l)
(mem : k ∈ l)
:
theorem
Std.TreeSet.getD_ofList_of_mem
{α : Type u}
{cmp : α → α → Ordering}
[TransCmp cmp]
{l : List α}
{k k' fallback : α}
(k_eq : cmp k k' = Ordering.eq)
(distinct : List.Pairwise (fun (a b : α) => ¬cmp a b = Ordering.eq) l)
(mem : k ∈ l)
:
theorem
Std.TreeSet.size_ofList
{α : Type u}
{cmp : α → α → Ordering}
[TransCmp cmp]
{l : List α}
(distinct : List.Pairwise (fun (a b : α) => ¬cmp a b = Ordering.eq) l)
: