Documentation

PFR.ForMathlib.Entropy.Kernel.MutualInfo

Mutual Information of kernels #

Main definitions #

Main statements #

Notations #

noncomputable def ProbabilityTheory.Kernel.mutualInfo {S : Type u_2} {T : Type u_3} {U : Type u_4} [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] (κ : ProbabilityTheory.Kernel T (S × U)) (μ : MeasureTheory.Measure T) :

Mutual information of a kernel into a product space with respect to a measure.

Equations
  • Ik[κ , μ] = Hk[κ.fst , μ] + Hk[κ.snd , μ] - Hk[κ , μ]
Instances For

    Mutual information of a kernel into a product space with respect to a measure.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      Pretty printer defined by notation3 command.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem ProbabilityTheory.Kernel.mutualInfo_def {S : Type u_2} {T : Type u_3} {U : Type u_4} [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] (κ : ProbabilityTheory.Kernel T (S × U)) (μ : MeasureTheory.Measure T) :
        Ik[κ , μ] = Hk[κ.fst , μ] + Hk[κ.snd , μ] - Hk[κ , μ]
        @[simp]
        theorem ProbabilityTheory.Kernel.mutualInfo_zero_measure {S : Type u_2} {T : Type u_3} {U : Type u_4} [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] (κ : ProbabilityTheory.Kernel T (S × U)) :
        Ik[κ , 0] = 0
        @[simp]
        theorem ProbabilityTheory.Kernel.mutualInfo_congr {S : Type u_2} {T : Type u_3} {U : Type u_4} [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] {κ : ProbabilityTheory.Kernel T (S × U)} {η : ProbabilityTheory.Kernel T (S × U)} {μ : MeasureTheory.Measure T} (h : κ =ᵐ[μ] η) :
        Ik[κ , μ] = Ik[η , μ]
        theorem ProbabilityTheory.Kernel.compProd_assoc {S : Type u_2} {T : Type u_3} {U : Type u_4} {V : Type u_5} [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] [MeasurableSpace V] (ξ : ProbabilityTheory.Kernel T S) [ProbabilityTheory.IsSFiniteKernel ξ] (κ : ProbabilityTheory.Kernel (T × S) U) [ProbabilityTheory.IsSFiniteKernel κ] (η : ProbabilityTheory.Kernel (T × S × U) V) [ProbabilityTheory.IsSFiniteKernel η] :
        ((ξ.compProd κ).compProd η).map MeasurableEquiv.prodAssoc = ξ.compProd (κ.compProd (η.comap MeasurableEquiv.prodAssoc ))
        theorem ProbabilityTheory.Kernel.Measure.compProd_compProd {S : Type u_2} {T : Type u_3} {U : Type u_4} [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] (μ : MeasureTheory.Measure T) (ξ : ProbabilityTheory.Kernel T S) [ProbabilityTheory.IsSFiniteKernel ξ] (κ : ProbabilityTheory.Kernel (T × S) U) [ProbabilityTheory.IsSFiniteKernel κ] :
        μ.compProd (ξ.compProd κ) = MeasureTheory.Measure.map (⇑MeasurableEquiv.prodAssoc) ((μ.compProd ξ).compProd κ)
        theorem ProbabilityTheory.Kernel.Measure.compProd_compProd' {S : Type u_2} {T : Type u_3} {U : Type u_4} [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] (μ : MeasureTheory.Measure T) (ξ : ProbabilityTheory.Kernel T S) [ProbabilityTheory.IsSFiniteKernel ξ] (κ : ProbabilityTheory.Kernel (T × S) U) [ProbabilityTheory.IsSFiniteKernel κ] :
        μ.compProd (ξ.compProd κ) = MeasureTheory.Measure.comap (⇑MeasurableEquiv.prodAssoc.symm) ((μ.compProd ξ).compProd κ)
        theorem ProbabilityTheory.Kernel.Measure.compProd_compProd'' {S : Type u_2} {T : Type u_3} {U : Type u_4} [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] (μ : MeasureTheory.Measure T) (ξ : ProbabilityTheory.Kernel T S) [ProbabilityTheory.IsSFiniteKernel ξ] (κ : ProbabilityTheory.Kernel (T × S) U) [ProbabilityTheory.IsSFiniteKernel κ] :
        (μ.compProd ξ).compProd κ = MeasureTheory.Measure.comap (⇑MeasurableEquiv.prodAssoc) (μ.compProd (ξ.compProd κ))
        @[simp]
        theorem ProbabilityTheory.Kernel.mutualInfo_compProd {S : Type u_2} {T : Type u_3} {U : Type u_4} [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] [MeasurableSingletonClass S] [MeasurableSingletonClass U] [MeasurableSingletonClass T] [Countable S] [Countable T] {κ : ProbabilityTheory.Kernel T S} [ProbabilityTheory.IsZeroOrMarkovKernel κ] {η : ProbabilityTheory.Kernel (T × S) U} [ProbabilityTheory.IsMarkovKernel η] {μ : MeasureTheory.Measure T} [MeasureTheory.IsZeroOrProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : κ.AEFiniteKernelSupport μ) (hη : η.AEFiniteKernelSupport (μ.compProd κ)) :
        Ik[κ.compProd η , μ] = Hk[κ , μ] + Hk[(κ.compProd η).snd , μ] - Hk[κ.compProd η , μ]
        theorem ProbabilityTheory.Kernel.mutualInfo_eq_fst_sub {S : Type u_2} {T : Type u_3} {U : Type u_4} [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] [MeasurableSingletonClass S] [MeasurableSingletonClass U] [MeasurableSingletonClass T] [Countable S] [Countable T] [Countable U] [Nonempty S] {κ : ProbabilityTheory.Kernel T (S × U)} [ProbabilityTheory.IsZeroOrMarkovKernel κ] {μ : MeasureTheory.Measure T} [MeasureTheory.IsZeroOrProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : κ.AEFiniteKernelSupport μ) :
        Ik[κ , μ] = Hk[κ.fst , μ] - Hk[κ.swapRight.condKernel , μ.compProd κ.snd]
        theorem ProbabilityTheory.Kernel.entropy_submodular_compProd {S : Type u_2} {T : Type u_3} {U : Type u_4} {V : Type u_5} [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] [MeasurableSpace V] [Countable S] [MeasurableSingletonClass S] [Countable T] [MeasurableSingletonClass T] [Countable U] [MeasurableSingletonClass U] [Countable V] [MeasurableSingletonClass V] {ξ : ProbabilityTheory.Kernel T S} [ProbabilityTheory.IsZeroOrMarkovKernel ξ] {κ : ProbabilityTheory.Kernel (T × S) U} [ProbabilityTheory.IsZeroOrMarkovKernel κ] {η : ProbabilityTheory.Kernel (T × S × U) V} [ProbabilityTheory.IsMarkovKernel η] {μ : MeasureTheory.Measure T} [MeasureTheory.IsZeroOrProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : κ.AEFiniteKernelSupport (μ.compProd ξ)) (hη : η.AEFiniteKernelSupport (μ.compProd (ξ.compProd κ))) (hξ : ξ.AEFiniteKernelSupport μ) :
        Hk[η , μ.compProd (ξ.compProd κ)] Hk[(κ.compProd (η.comap MeasurableEquiv.prodAssoc )).snd , μ.compProd ξ]
        theorem ProbabilityTheory.Kernel.entropy_compProd_triple_add_entropy_le {S : Type u_2} {T : Type u_3} {U : Type u_4} {V : Type u_5} [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] [MeasurableSpace V] [Countable S] [MeasurableSingletonClass S] [Countable T] [MeasurableSingletonClass T] [Countable U] [MeasurableSingletonClass U] [Countable V] [MeasurableSingletonClass V] {ξ : ProbabilityTheory.Kernel T S} [ProbabilityTheory.IsZeroOrMarkovKernel ξ] {κ : ProbabilityTheory.Kernel (T × S) U} [ProbabilityTheory.IsMarkovKernel κ] {η : ProbabilityTheory.Kernel (T × S × U) V} [ProbabilityTheory.IsMarkovKernel η] {μ : MeasureTheory.Measure T} [MeasureTheory.IsZeroOrProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : κ.AEFiniteKernelSupport (μ.compProd ξ)) (hη : η.AEFiniteKernelSupport (μ.compProd (ξ.compProd κ))) (hξ : ξ.AEFiniteKernelSupport μ) :
        Hk[(ξ.compProd κ).compProd η , μ] + Hk[ξ , μ] Hk[ξ.compProd (κ.compProd (η.comap MeasurableEquiv.prodAssoc )).snd , μ] + Hk[ξ.compProd κ , μ]

        The submodularity inequality: $$ H[X,Y,Z] + H[X] \leq H[X,Z] + H[X,Y].$$

        The submodularity inequality: $$ H[X,Y,Z] + H[Z] \leq H[X,Z] + H[Y,Z].$$