Introduction to Measure Theory, Section 1.3.2: Measurable functions #
A companion to (the introduction to) Section 1.3.2 of the book "An introduction to Measure Theory".
def
PointwiseConvergesTo
{X : Type u_1}
{Y : Type u_2}
[TopologicalSpace Y]
(f : ℕ → X → Y)
(g : X → Y)
:
Equations
- PointwiseConvergesTo f g = ∀ (x : X), Filter.Tendsto (fun (n : ℕ) => f n x) Filter.atTop (nhds (g x))
Instances For
Definiiton 1.3.8 (Unsigned measurable function)
Equations
- UnsignedMeasurable f = (Unsigned f ∧ ∃ (g : ℕ → EuclideanSpace' d → EReal), (∀ (n : ℕ), UnsignedSimpleFunction (g n)) ∧ PointwiseConvergesTo g f)
Instances For
Equations
- EReal.BoundedFunction f = ∃ (M : NNReal), ∀ (x : X), (f x).abs ≤ ↑M
Instances For
Equations
- FiniteMeasureSupport f = (Lebesgue_measure (Support f) < ⊤)
Instances For
def
PointwiseAeConvergesTo
{d : ℕ}
{Y : Type u_1}
[TopologicalSpace Y]
(f : ℕ → EuclideanSpace' d → Y)
(g : EuclideanSpace' d → Y)
:
Equations
- PointwiseAeConvergesTo f g = AlmostAlways fun (x : EuclideanSpace' d) => Filter.Tendsto (fun (n : ℕ) => f n x) Filter.atTop (nhds (g x))
Instances For
theorem
UnsignedMeasurable.TFAE
{d : ℕ}
{f : EuclideanSpace' d → EReal}
(hf : Unsigned f)
:
[UnsignedMeasurable f, ∃ (g : ℕ → EuclideanSpace' d → EReal),
(∀ (n : ℕ), UnsignedSimpleFunction (g n)) ∧ ∀ (x : EuclideanSpace' d), Filter.Tendsto (fun (n : ℕ) => g n x) Filter.atTop (nhds (f x)), ∃ (g : ℕ → EuclideanSpace' d → EReal), (∀ (n : ℕ), UnsignedSimpleFunction (g n)) ∧ PointwiseAeConvergesTo g f, ∃ (g : ℕ → EuclideanSpace' d → EReal),
(∀ (n : ℕ), UnsignedSimpleFunction (g n) ∧ EReal.BoundedFunction (g n) ∧ FiniteMeasureSupport (g n)) ∧ (∀ (x : EuclideanSpace' d), Monotone fun (n : ℕ) => g n x) ∧ ∀ (x : EuclideanSpace' d), f x = ⨆ (n : ℕ), g n x, ∀ (t : EReal), MeasurableSet {x : EuclideanSpace' d | f x > t}, ∀ (t : EReal), MeasurableSet {x : EuclideanSpace' d | f x ≥ t}, ∀ (t : EReal), MeasurableSet {x : EuclideanSpace' d | f x < t}, ∀ (t : EReal), MeasurableSet {x : EuclideanSpace' d | f x ≤ t}, ∀ (I : BoundedInterval), MeasurableSet (f ⁻¹' (Real.toEReal '' ↑I)), ∀ (U : Set EReal), IsOpen U → MeasurableSet (f ⁻¹' U), ∀ (K : Set EReal), IsClosed K → MeasurableSet (f ⁻¹' K)].TFAE
Lemma 1.3.9 (Equivalent notions of measurability). Some slight changes to the statement have been made to make the claims cleaner to state
theorem
Continuous.UnsignedMeasurable
{d : ℕ}
{f : EuclideanSpace' d → EReal}
(hf : Continuous f)
(hnonneg : Unsigned f)
:
Exercise 1.3.3(i)
theorem
UnsignedSimpleFunction.unsignedMeasurable
{d : ℕ}
{f : EuclideanSpace' d → EReal}
(hf : UnsignedSimpleFunction f)
:
Exercise 1.3.3(ii)
theorem
UnsignedMeasurable.sup
{d : ℕ}
{f : ℕ → EuclideanSpace' d → EReal}
(hf : ∀ (n : ℕ), UnsignedMeasurable (f n))
:
UnsignedMeasurable fun (x : EuclideanSpace' d) => ⨆ (n : ℕ), f n x
Exercise 1.3.3(iii)
theorem
UnsignedMeasurable.inf
{d : ℕ}
{f : ℕ → EuclideanSpace' d → EReal}
(hf : ∀ (n : ℕ), UnsignedMeasurable (f n))
:
UnsignedMeasurable fun (x : EuclideanSpace' d) => ⨅ (n : ℕ), f n x
Exercise 1.3.3(iii)
theorem
UnsignedMeasurable.limsup
{d : ℕ}
{f : ℕ → EuclideanSpace' d → EReal}
(hf : ∀ (n : ℕ), UnsignedMeasurable (f n))
:
UnsignedMeasurable fun (x : EuclideanSpace' d) => Filter.limsup (fun (n : ℕ) => f n x) Filter.atTop
Exercise 1.3.3(iii)
theorem
UnsignedMeasurable.liminf
{d : ℕ}
{f : ℕ → EuclideanSpace' d → EReal}
(hf : ∀ (n : ℕ), UnsignedMeasurable (f n))
:
UnsignedMeasurable fun (x : EuclideanSpace' d) => Filter.liminf (fun (n : ℕ) => f n x) Filter.atTop
Exercise 1.3.3(iii)
theorem
UnsignedMeasurable.aeEqual
{d : ℕ}
{f g : EuclideanSpace' d → EReal}
(hf : UnsignedMeasurable f)
(heq : AlmostEverywhereEqual f g)
:
Exercise 1.3.3(iv)
theorem
UnsignedMeasurable.aeLimit
{d : ℕ}
{f : EuclideanSpace' d → EReal}
(g : ℕ → EuclideanSpace' d → EReal)
(hf : ∀ (n : ℕ), UnsignedMeasurable (g n))
(heq : PointwiseAeConvergesTo g f)
:
Exercise 1.3.3(v)
theorem
UnsignedMeasurable.comp_cts
{d : ℕ}
{f : EuclideanSpace' d → EReal}
(hf : UnsignedMeasurable f)
{φ : EReal → EReal}
(hφ : Continuous φ)
:
UnsignedMeasurable (φ ∘ f)
Exercise 1.3.3(vi)
theorem
UnsignedMeasurable.add
{d : ℕ}
{f g : EuclideanSpace' d → EReal}
(hf : UnsignedMeasurable f)
(hg : UnsignedMeasurable g)
:
UnsignedMeasurable (f + g)
Exercise 1.3.3(vii)
theorem
UnsignedMeasurable.bounded_iff
{d : ℕ}
{f : EuclideanSpace' d → EReal}
(hf : Unsigned f)
:
UnsignedMeasurable f ∧ EReal.BoundedFunction f ↔ ∃ (g : ℕ → EuclideanSpace' d → EReal),
(∀ (n : ℕ), UnsignedSimpleFunction (g n) ∧ EReal.BoundedFunction (g n)) ∧ UniformConvergesTo g f
Exercise 1.3.4
Exercise 1.3.5
theorem
UnsignedMeasurable.measurable_graph
{d : ℕ}
{f : EuclideanSpace' d → EReal}
(hf : UnsignedMeasurable f)
:
LebesgueMeasurable
{p : EuclideanSpace' (d + 1) | ∃ (x : EuclideanSpace' d) (t : ℝ),
(EuclideanSpace'.prod_equiv d 1) p = (x, Real.equiv_EuclideanSpace' t) ∧ 0 ≤ t ∧ ↑t ≤ f x}
Exercise 1.3.6
Definition 1.3.11 (Complex measurability)
Equations
- ComplexMeasurable f = ∃ (g : ℕ → EuclideanSpace' d → ℂ), (∀ (n : ℕ), ComplexSimpleFunction (g n)) ∧ PointwiseConvergesTo g f
Instances For
Equations
- RealMeasurable f = ∃ (g : ℕ → EuclideanSpace' d → ℝ), (∀ (n : ℕ), RealSimpleFunction (g n)) ∧ PointwiseConvergesTo g f
Instances For
theorem
RealMeasurable.TFAE
{d : ℕ}
{f : EuclideanSpace' d → ℝ}
:
[RealMeasurable f, ∃ (g : ℕ → EuclideanSpace' d → ℝ), (∀ (n : ℕ), RealSimpleFunction (g n)) ∧ PointwiseAeConvergesTo g f, UnsignedMeasurable (EReal.pos_fun f) ∧ UnsignedMeasurable (EReal.neg_fun f), ∀ (U : Set ℝ), IsOpen U → MeasurableSet (f ⁻¹' U), ∀ (K : Set ℝ), IsClosed K → MeasurableSet (f ⁻¹' K)].TFAE
Exercise 1.3.7
theorem
ComplexMeasurable.TFAE
{d : ℕ}
{f : EuclideanSpace' d → ℂ}
:
[ComplexMeasurable f, ∃ (g : ℕ → EuclideanSpace' d → ℂ), (∀ (n : ℕ), ComplexSimpleFunction (g n)) ∧ PointwiseAeConvergesTo g f, RealMeasurable (Complex.re_fun f) ∧ RealMeasurable (Complex.im_fun f), UnsignedMeasurable (EReal.pos_fun (Complex.re_fun f)) ∧ UnsignedMeasurable (EReal.neg_fun (Complex.im_fun f)) ∧ UnsignedMeasurable (EReal.pos_fun (Complex.im_fun f)) ∧ UnsignedMeasurable (EReal.neg_fun (Complex.re_fun f)), ∀ (U : Set ℂ), IsOpen U → MeasurableSet (f ⁻¹' U), ∀ (K : Set ℂ), IsClosed K → MeasurableSet (f ⁻¹' K)].TFAE
Exercise 1.3.8(i)
Exercise 1.3.8(ii)
theorem
RealMeasurable.aeEqual
{d : ℕ}
{f g : EuclideanSpace' d → ℝ}
(hf : RealMeasurable f)
(heq : AlmostEverywhereEqual f g)
:
Exercise 1.3.8(iii)
theorem
ComplexMeasurable.aeEqual
{d : ℕ}
{f g : EuclideanSpace' d → ℂ}
(hf : ComplexMeasurable f)
(heq : AlmostEverywhereEqual f g)
:
theorem
RealMeasurable.aeLimit
{d : ℕ}
{f : EuclideanSpace' d → ℝ}
(g : ℕ → EuclideanSpace' d → ℝ)
(hf : ∀ (n : ℕ), RealMeasurable (g n))
(heq : PointwiseAeConvergesTo g f)
:
Exercise 1.3.8(iv)
theorem
ComplexMeasurable.aeLimit
{d : ℕ}
{f : EuclideanSpace' d → ℂ}
(g : ℕ → EuclideanSpace' d → ℂ)
(hf : ∀ (n : ℕ), ComplexMeasurable (g n))
(heq : PointwiseAeConvergesTo g f)
:
theorem
RealMeasurable.comp_cts
{d : ℕ}
{f : EuclideanSpace' d → ℝ}
(hf : RealMeasurable f)
{φ : ℝ → ℝ}
(hφ : Continuous φ)
:
RealMeasurable (φ ∘ f)
Exercise 1.3.8(v)
theorem
ComplexMeasurable.comp_cts
{d : ℕ}
{f : EuclideanSpace' d → ℂ}
(hf : ComplexMeasurable f)
{φ : ℂ → ℂ}
(hφ : Continuous φ)
:
ComplexMeasurable (φ ∘ f)
theorem
RealMeasurable.add
{d : ℕ}
{f g : EuclideanSpace' d → ℝ}
(hf : RealMeasurable f)
(hg : RealMeasurable g)
:
RealMeasurable (f + g)
Exercise 1.3.8(vi)
theorem
ComplexMeasurable.add
{d : ℕ}
{f g : EuclideanSpace' d → ℂ}
(hf : ComplexMeasurable f)
(hg : ComplexMeasurable g)
:
ComplexMeasurable (f + g)
theorem
RealMeasurable.sub
{d : ℕ}
{f g : EuclideanSpace' d → ℝ}
(hf : RealMeasurable f)
(hg : RealMeasurable g)
:
RealMeasurable (f - g)
Exercise 1.3.8(vi)
theorem
ComplexMeasurable.sub
{d : ℕ}
{f g : EuclideanSpace' d → ℂ}
(hf : ComplexMeasurable f)
(hg : ComplexMeasurable g)
:
ComplexMeasurable (f - g)
theorem
RealMeasurable.mul
{d : ℕ}
{f g : EuclideanSpace' d → ℝ}
(hf : RealMeasurable f)
(hg : RealMeasurable g)
:
RealMeasurable (f * g)
Exercise 1.3.8(vi)
theorem
ComplexMeasurable.mul
{d : ℕ}
{f g : EuclideanSpace' d → ℂ}
(hf : ComplexMeasurable f)
(hg : ComplexMeasurable g)
:
ComplexMeasurable (f * g)
theorem
RealMeasurable.riemann_integrable
{f : ℝ → ℝ}
{I : BoundedInterval}
(hf : RiemannIntegrableOn f I)
:
RealMeasurable ((fun (x : ℝ) => if x ∈ ↑I then f x else 0) ∘ ⇑EuclideanSpace'.equiv_Real)
Exercise 1.3.9