Documentation

Analysis.MeasureTheory.Section_1_3_2

Introduction to Measure Theory, Section 1.3.2: Measurable functions #

A companion to (the introduction to) Section 1.3.2 of the book "An introduction to Measure Theory".

def Unsigned {X : Type u_1} {Y : Type u_2} [LE Y] [Zero Y] (f : XY) :
Equations
Instances For
    def PointwiseConvergesTo {X : Type u_1} {Y : Type u_2} [TopologicalSpace Y] (f : XY) (g : XY) :
    Equations
    Instances For

      Definiiton 1.3.8 (Unsigned measurable function)

      Equations
      Instances For
        def EReal.BoundedFunction {X : Type u_1} (f : XEReal) :
        Equations
        Instances For
          def FiniteMeasureSupport {d : } {Y : Type u_1} [Zero Y] (f : EuclideanSpace' dY) :
          Equations
          Instances For
            def PointwiseAeConvergesTo {d : } {Y : Type u_1} [TopologicalSpace Y] (f : EuclideanSpace' dY) (g : EuclideanSpace' dY) :
            Equations
            Instances For
              theorem UnsignedMeasurable.TFAE {d : } {f : EuclideanSpace' dEReal} (hf : Unsigned f) :
              [UnsignedMeasurable f, ∃ (g : EuclideanSpace' dEReal), (∀ (n : ), UnsignedSimpleFunction (g n)) ∀ (x : EuclideanSpace' d), Filter.Tendsto (fun (n : ) => g n x) Filter.atTop (nhds (f x)), ∃ (g : EuclideanSpace' dEReal), (∀ (n : ), UnsignedSimpleFunction (g n)) PointwiseAeConvergesTo g f, ∃ (g : EuclideanSpace' dEReal), (∀ (n : ), UnsignedSimpleFunction (g n) EReal.BoundedFunction (g n) FiniteMeasureSupport (g n)) (∀ (x : EuclideanSpace' d), Monotone fun (n : ) => g n x) ∀ (x : EuclideanSpace' d), f x = ⨆ (n : ), g n x, ∀ (t : EReal), MeasurableSet {x : EuclideanSpace' d | f x > t}, ∀ (t : EReal), MeasurableSet {x : EuclideanSpace' d | f x t}, ∀ (t : EReal), MeasurableSet {x : EuclideanSpace' d | f x < t}, ∀ (t : EReal), MeasurableSet {x : EuclideanSpace' d | f x t}, ∀ (I : BoundedInterval), MeasurableSet (f ⁻¹' (Real.toEReal '' I)), ∀ (U : Set EReal), IsOpen UMeasurableSet (f ⁻¹' U), ∀ (K : Set EReal), IsClosed KMeasurableSet (f ⁻¹' K)].TFAE

              Lemma 1.3.9 (Equivalent notions of measurability). Some slight changes to the statement have been made to make the claims cleaner to state

              Exercise 1.3.3(i)

              theorem UnsignedMeasurable.sup {d : } {f : EuclideanSpace' dEReal} (hf : ∀ (n : ), UnsignedMeasurable (f n)) :
              UnsignedMeasurable fun (x : EuclideanSpace' d) => ⨆ (n : ), f n x

              Exercise 1.3.3(iii)

              theorem UnsignedMeasurable.inf {d : } {f : EuclideanSpace' dEReal} (hf : ∀ (n : ), UnsignedMeasurable (f n)) :
              UnsignedMeasurable fun (x : EuclideanSpace' d) => ⨅ (n : ), f n x

              Exercise 1.3.3(iii)

              theorem UnsignedMeasurable.limsup {d : } {f : EuclideanSpace' dEReal} (hf : ∀ (n : ), UnsignedMeasurable (f n)) :

              Exercise 1.3.3(iii)

              theorem UnsignedMeasurable.liminf {d : } {f : EuclideanSpace' dEReal} (hf : ∀ (n : ), UnsignedMeasurable (f n)) :

              Exercise 1.3.3(iii)

              Exercise 1.3.3(iv)

              theorem UnsignedMeasurable.aeLimit {d : } {f : EuclideanSpace' dEReal} (g : EuclideanSpace' dEReal) (hf : ∀ (n : ), UnsignedMeasurable (g n)) (heq : PointwiseAeConvergesTo g f) :

              Exercise 1.3.3(v)

              theorem UnsignedMeasurable.comp_cts {d : } {f : EuclideanSpace' dEReal} (hf : UnsignedMeasurable f) {φ : ERealEReal} ( : Continuous φ) :

              Exercise 1.3.3(vi)

              Exercise 1.3.3(vii)

              def UniformConvergesTo {X : Type u_1} (f : XEReal) (g : XEReal) :
              Equations
              Instances For

                Definition 1.3.11 (Complex measurability)

                Equations
                Instances For
                  def RealMeasurable {d : } (f : EuclideanSpace' d) :
                  Equations
                  Instances For

                    Exercise 1.3.8(i)

                    Exercise 1.3.8(iii)

                    theorem RealMeasurable.aeLimit {d : } {f : EuclideanSpace' d} (g : EuclideanSpace' d) (hf : ∀ (n : ), RealMeasurable (g n)) (heq : PointwiseAeConvergesTo g f) :

                    Exercise 1.3.8(iv)

                    theorem ComplexMeasurable.aeLimit {d : } {f : EuclideanSpace' d} (g : EuclideanSpace' d) (hf : ∀ (n : ), ComplexMeasurable (g n)) (heq : PointwiseAeConvergesTo g f) :
                    theorem RealMeasurable.comp_cts {d : } {f : EuclideanSpace' d} (hf : RealMeasurable f) {φ : } ( : Continuous φ) :

                    Exercise 1.3.8(v)

                    theorem ComplexMeasurable.comp_cts {d : } {f : EuclideanSpace' d} (hf : ComplexMeasurable f) {φ : } ( : Continuous φ) :
                    theorem RealMeasurable.add {d : } {f g : EuclideanSpace' d} (hf : RealMeasurable f) (hg : RealMeasurable g) :

                    Exercise 1.3.8(vi)

                    theorem RealMeasurable.sub {d : } {f g : EuclideanSpace' d} (hf : RealMeasurable f) (hg : RealMeasurable g) :

                    Exercise 1.3.8(vi)

                    theorem RealMeasurable.mul {d : } {f g : EuclideanSpace' d} (hf : RealMeasurable f) (hg : RealMeasurable g) :

                    Exercise 1.3.8(vi)

                    Exercise 1.3.9