Documentation

Analysis.MeasureTheory.Section_1_3_3

Introduction to Measure Theory, Section 1.3.3: Unsigned Lebesgue integrals #

A companion to (the introduction to) Section 1.3.3 of the book "An introduction to Measure Theory".

noncomputable def LowerUnsignedLebesgueIntegral {d : } (f : EuclideanSpace' dEReal) :

Definition 1.3.12 (Lower unsigned Lebesgue integral)

Equations
Instances For
    noncomputable def UpperUnsignedLebesgueIntegral {d : } (f : EuclideanSpace' dEReal) :

    Definition 1.3.12 (Upper unsigned Lebesgue integral)

    Equations
    Instances For

      Exercise 1.3.10(i) (Compatibility with the simple integral)

      Exercise 1.3.10(ii) (Monotonicity)

      Exercise 1.3.10(iii) (Homogeneity)

      Exercise 1.3.10(viii) (Vertical truncation)

      noncomputable def UnsignedLebesgueIntegral {d : } (f : EuclideanSpace' dEReal) :

      Definition 1.3.13 (Unsigned Lebesgue integral). For Lean purposes it is convenient to assign a "junk" value to this integral when f is not unsigned measurable.

      Equations
      Instances For

        Corollary 1.3.4 (Finite additivity of Lebesgue integral )

        Exercise 1.3.13 (Area interpretation of integral)

        theorem UnsignedLebesgueIntegral.unique {d : } (integ : (EuclideanSpace' dEReal)EReal) (hsimple : ∀ (f : EuclideanSpace' dEReal) (hf : UnsignedSimpleFunction f), integ f = hf.integ) (hadd : ∀ (f g : EuclideanSpace' dEReal), UnsignedMeasurable fUnsignedMeasurable ginteg (f + g) = integ f + integ g) (hvert : ∀ (f : EuclideanSpace' dEReal), UnsignedMeasurable fFilter.Tendsto (fun (n : ) => integ fun (x : EuclideanSpace' d) => min (f x) n) Filter.atTop (nhds (integ f))) (hhoriz : ∀ (f : EuclideanSpace' dEReal), UnsignedMeasurable fFilter.Tendsto (fun (n : ) => integ (f * Real.toEReal (Metric.ball 0 n).indicator')) Filter.atTop (nhds (integ f))) (f : EuclideanSpace' dEReal) :

        Exercise 1.3.14 (Uniqueness)

        Exercise 1.3.15 (Translation invariance)

        Exercise 1.3.16 (Linear change of variables)

        Exercise 1.3.17 (Compatibility with the Riemann integral)

        Lemma 1.3.15 (Markov's inequality)

        Exercise 1.3.18 (ii)