Analysis I, Section 11.10: Consequences of the fundamental theorems #
I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.
Main constructions and results of this section:
- Integration by parts
theorem
Chapter11.integ_of_mul_deriv
{a b : ℝ}
(hab : a ≤ b)
{F G : ℝ → ℝ}
(hF : DifferentiableOn ℝ F ↑(BoundedInterval.Icc a b))
(hG : DifferentiableOn ℝ G ↑(BoundedInterval.Icc a b))
(hF' : IntegrableOn (derivWithin F ↑(BoundedInterval.Icc a b)) (BoundedInterval.Icc a b))
(hG' : IntegrableOn (derivWithin G ↑(BoundedInterval.Icc a b)) (BoundedInterval.Icc a b))
:
integ (F * derivWithin G ↑(BoundedInterval.Icc a b)) (BoundedInterval.Icc a b) = F b * G b - F a * G a - integ (G * derivWithin F ↑(BoundedInterval.Icc a b)) (BoundedInterval.Icc a b)
Proposition 11.10.1 (Integration by parts formula) / Exercise 11.10.1
theorem
Chapter11.PiecewiseConstantOn.RS_integ_eq_integ_of_mul_deriv
{a b : ℝ}
{α f : ℝ → ℝ}
(hα_diff : DifferentiableOn ℝ α ↑(BoundedInterval.Icc a b))
(hαcont : Continuous α)
(hα' : IntegrableOn (derivWithin α ↑(BoundedInterval.Icc a b)) (BoundedInterval.Icc a b))
(hf : PiecewiseConstantOn f (BoundedInterval.Icc a b))
:
IntegrableOn (f * derivWithin α ↑(BoundedInterval.Icc a b)) (BoundedInterval.Icc a b) ∧ Chapter11.integ (f * derivWithin α ↑(BoundedInterval.Icc a b)) (BoundedInterval.Icc a b) = RS_integ f (BoundedInterval.Icc a b) α
Theorem 11.10.2. Need to add continuity of α due to our conventions on α-length
theorem
Chapter11.RS_integ_eq_integ_of_mul_deriv
{a b : ℝ}
(hab : a < b)
{α f : ℝ → ℝ}
(hα : Monotone α)
(hα_diff : DifferentiableOn ℝ α ↑(BoundedInterval.Icc a b))
(hαcont : Continuous α)
(hα' : IntegrableOn (derivWithin α ↑(BoundedInterval.Icc a b)) (BoundedInterval.Icc a b))
(hf : RS_IntegrableOn f (BoundedInterval.Icc a b) α)
:
IntegrableOn (f * derivWithin α ↑(BoundedInterval.Icc a b)) (BoundedInterval.Icc a b) ∧ integ (f * derivWithin α ↑(BoundedInterval.Icc a b)) (BoundedInterval.Icc a b) = RS_integ f (BoundedInterval.Icc a b) α
Corollary 11.10.3
theorem
Chapter11.PiecewiseConstantOn.RS_integ_of_comp
{a b : ℝ}
(hab : a < b)
{φ f : ℝ → ℝ}
(hφ_cont : Continuous φ)
(hφ_mono : Monotone φ)
(hf : PiecewiseConstantOn f (BoundedInterval.Icc (φ a) (φ b)))
:
PiecewiseConstantOn (f ∘ φ) (BoundedInterval.Icc a b) ∧ RS_integ (f ∘ φ) (BoundedInterval.Icc a b) φ = integ f (BoundedInterval.Icc (φ a) (φ b))
Lemma 11.10.5 / Exercise 11.10.2
theorem
Chapter11.RS_integ_of_comp
{a b : ℝ}
(hab : a < b)
{φ f : ℝ → ℝ}
(hφ_cont : Continuous φ)
(hφ_mono : Monotone φ)
(hf : IntegrableOn f (BoundedInterval.Icc (φ a) (φ b)))
:
RS_IntegrableOn (f ∘ φ) (BoundedInterval.Icc a b) φ ∧ RS_integ (f ∘ φ) (BoundedInterval.Icc a b) φ = integ f (BoundedInterval.Icc (φ a) (φ b))
Proposition 11.10.6 (Change of variables formula II)
theorem
Chapter11.integ_of_comp
{a b : ℝ}
(hab : a < b)
{φ f : ℝ → ℝ}
(hφ_diff : DifferentiableOn ℝ φ ↑(BoundedInterval.Icc a b))
(hφ_cont : Continuous φ)
(hφ_mono : Monotone φ)
(hφ' : IntegrableOn (derivWithin φ ↑(BoundedInterval.Icc a b)) (BoundedInterval.Icc a b))
(hf : IntegrableOn f (BoundedInterval.Icc (φ a) (φ b)))
:
IntegrableOn (f ∘ φ * derivWithin φ ↑(BoundedInterval.Icc a b)) (BoundedInterval.Icc a b) ∧ integ (f ∘ φ * derivWithin φ ↑(BoundedInterval.Icc a b)) (BoundedInterval.Icc a b) = integ f (BoundedInterval.Icc (φ a) (φ b))
Proposition 11.10.7 (Change of variables formula III)