Documentation

PFR.ApproxHomPFR

The approximate homomorphism form of PFR #

Here we apply PFR to show that almost homomorphisms f from a 2-group to a 2-group often coincide with a (shifted) actual homomorphisms. Here, approximate is in the sense that f(x+y)=f(x)+f(y) is true for a positive proportion of x,y.

Main result #

theorem approx_hom_pfr {G : Type u_1} {G' : Type u_2} [AddCommGroup G] [Fintype G] [AddCommGroup G'] [Fintype G'] [Module (ZMod 2) G] [Module (ZMod 2) G'] (f : GG') (K : ) (hK : K > 0) (hf : (Nat.card G) ^ 2 / K (Nat.card {x : G × G | f (x.1 + x.2) = f x.1 + f x.2})) :
∃ (φ : G →+ G') (c : G'), (Nat.card {x : G | f x = φ x + c}) (Nat.card G) / (2 ^ 144 * K ^ 122)

Let $G, G'$ be finite abelian $2$-groups. Let $f : G \to G'$ be a function, and suppose that there are at least $|G|^2 / K$ pairs $(x,y) \in G^2$ such that $$ f(x+y) = f(x) + f(y).$$ Then there exists a homomorphism $\phi : G \to G'$ and a constant $c \in G'$ such that $f(x) = \phi(x)+c$ for at least $|G| / (2 ^ {144} * K ^ {122})$ values of $x \in G$.