Documentation

PFR.ForMathlib.Entropy.Kernel.RuzsaDist

Ruzsa distance between kernels #

Notations #

The Rusza distance between two measures, defined as H[X - Y] - H[X]/2 - H[Y]/2 where X and Y are independent variables distributed according to the two measures.

Equations
Instances For

    The Rusza distance between two kernels taking values in the same space, defined as the average Rusza distance between the image measures.

    Equations
    Instances For

      The Rusza distance between two kernels taking values in the same space, defined as the average Rusza distance between the image measures.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        Pretty printer defined by notation3 command.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem ProbabilityTheory.Kernel.rdist_zero_right {T : Type u_1} {T' : Type u_2} {G : Type u_4} [MeasurableSpace T] [MeasurableSpace T'] [MeasurableSpace G] [AddCommGroup G] (κ : ProbabilityTheory.Kernel T G) (η : ProbabilityTheory.Kernel T' G) (μ : MeasureTheory.Measure T) :
          dk[κ ; μ # η ; 0] = 0
          @[simp]
          theorem ProbabilityTheory.Kernel.rdist_zero_left {T : Type u_1} {T' : Type u_2} {G : Type u_4} [MeasurableSpace T] [MeasurableSpace T'] [MeasurableSpace G] [AddCommGroup G] (κ : ProbabilityTheory.Kernel T G) (η : ProbabilityTheory.Kernel T' G) (ν' : MeasureTheory.Measure T') :
          dk[κ ; 0 # η ; ν'] = 0
          theorem ProbabilityTheory.Kernel.rdist_eq {T : Type u_1} {T' : Type u_2} {G : Type u_4} [MeasurableSpace T] [MeasurableSpace T'] [MeasurableSpace G] [AddCommGroup G] [Countable T] [MeasurableSingletonClass T] [Countable T'] [MeasurableSingletonClass T'] {κ : ProbabilityTheory.Kernel T G} {η : ProbabilityTheory.Kernel T' G} {μ : MeasureTheory.Measure T} {ν : MeasureTheory.Measure T'} [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure ν] [ProbabilityTheory.FiniteSupport μ] [ProbabilityTheory.FiniteSupport ν] :
          dk[κ ; μ # η ; ν] = ∫ (x : T × T'), (fun (p : T × T') => Hm[MeasureTheory.Measure.map (fun (x : G × G) => x.1 - x.2) ((κ p.1).prod (η p.2))]) xμ.prod ν - Hk[κ , μ] / 2 - Hk[η , ν] / 2
          theorem ProbabilityTheory.Kernel.ruzsa_triangle_aux {G : Type u_4} [MeasurableSpace G] [AddCommGroup G] [MeasurableSingletonClass G] [Countable G] {T : Type u_5} [MeasurableSpace T] (κ : ProbabilityTheory.Kernel T (G × G)) (η : ProbabilityTheory.Kernel T G) [ProbabilityTheory.IsMarkovKernel κ] [ProbabilityTheory.IsMarkovKernel η] :
          ((κ.prod η).map fun (p : (G × G) × G) => p.2 - p.1.2) = (η.prod κ.snd).map fun (p : G × G) => p.1 - p.2
          theorem ProbabilityTheory.Kernel.ent_of_diff_le {T : Type u_1} {G : Type u_4} [MeasurableSpace T] [MeasurableSpace G] [AddCommGroup G] [Countable T] [MeasurableSingletonClass T] [MeasurableSingletonClass G] [Countable G] (κ : ProbabilityTheory.Kernel T (G × G)) (η : ProbabilityTheory.Kernel T G) [ProbabilityTheory.IsMarkovKernel κ] [ProbabilityTheory.IsMarkovKernel η] (μ : MeasureTheory.Measure T) [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : κ.FiniteKernelSupport) (hη : η.FiniteKernelSupport) :
          Hk[κ.map fun (p : G × G) => p.1 - p.2 , μ] Hk[(κ.fst.prod η).map fun (p : G × G) => p.1 - p.2 , μ] + Hk[(η.prod κ.snd).map fun (p : G × G) => p.1 - p.2 , μ] - Hk[η , μ]

          The improved entropic Ruzsa triangle inequality.