Introduction to Measure Theory, Section 1.3.4: Absolute integrability #
A companion to (the introduction to) Section 1.3.4 of the book "An introduction to Measure Theory".
Definition 1.3.17
Equations
Instances For
Equations
Instances For
Equations
Instances For
theorem
ComplexAbsolutelyIntegrable.abs
{d : ℕ}
(f : EuclideanSpace' d → ℂ)
(hf : ComplexAbsolutelyIntegrable f)
:
theorem
RealAbsolutelyIntegrable.abs
{d : ℕ}
(f : EuclideanSpace' d → ℝ)
(hf : RealAbsolutelyIntegrable f)
:
theorem
ComplexAbsolutelyIntegrable.re
{d : ℕ}
(f : EuclideanSpace' d → ℂ)
(hf : ComplexAbsolutelyIntegrable f)
:
theorem
ComplexAbsolutelyIntegrable.im
{d : ℕ}
(f : EuclideanSpace' d → ℂ)
(hf : ComplexAbsolutelyIntegrable f)
:
Equations
Instances For
noncomputable def
ComplexAbsolutelyIntegrable.norm
{d : ℕ}
{f : EuclideanSpace' d → ℂ}
(hf : ComplexAbsolutelyIntegrable f)
:
Equations
Instances For
noncomputable def
RealAbsolutelyIntegrable.norm
{d : ℕ}
{f : EuclideanSpace' d → ℝ}
(hf : RealAbsolutelyIntegrable f)
:
Equations
Instances For
Equations
- ⋯ = ⋯
Instances For
Equations
- ⋯ = ⋯
Instances For
def
RealAbsolutelyIntegrable.pos
{d : ℕ}
{f : EuclideanSpace' d → ℝ}
(hf : RealAbsolutelyIntegrable f)
:
Equations
- ⋯ = ⋯
Instances For
def
RealAbsolutelyIntegrable.neg
{d : ℕ}
{f : EuclideanSpace' d → ℝ}
(hf : RealAbsolutelyIntegrable f)
:
Equations
- ⋯ = ⋯
Instances For
noncomputable def
RealAbsolutelyIntegrable.integ
{d : ℕ}
{f : EuclideanSpace' d → ℝ}
(hf : RealAbsolutelyIntegrable f)
:
Equations
Instances For
noncomputable def
ComplexAbsolutelyIntegrable.integ
{d : ℕ}
{f : EuclideanSpace' d → ℂ}
(hf : ComplexAbsolutelyIntegrable f)
:
Instances For
def
RealSimpleFunction.absolutelyIntegrable_iff'
{d : ℕ}
{f : EuclideanSpace' d → ℝ}
(hf : RealSimpleFunction f)
:
Equations
- ⋯ = ⋯
Instances For
def
ComplexSimpleFunction.absolutelyIntegrable_iff'
{d : ℕ}
{f : EuclideanSpace' d → ℂ}
(hf : ComplexSimpleFunction f)
:
Equations
- ⋯ = ⋯
Instances For
def
RealSimpleFunction.AbsolutelyIntegrable.integ_eq
{d : ℕ}
{f : EuclideanSpace' d → ℝ}
(hf : RealSimpleFunction f)
(hfi : hf.AbsolutelyIntegrable)
:
Equations
- ⋯ = ⋯
Instances For
def
ComplexSimpleFunction.AbsolutelyIntegrable.integ_eq
{d : ℕ}
{f : EuclideanSpace' d → ℂ}
(hf : ComplexSimpleFunction f)
(hfi : hf.AbsolutelyIntegrable)
:
Equations
- ⋯ = ⋯
Instances For
theorem
RealAbsolutelyIntegrable.add
{d : ℕ}
{f g : EuclideanSpace' d → ℝ}
(hf : RealAbsolutelyIntegrable f)
(hg : RealAbsolutelyIntegrable g)
:
RealAbsolutelyIntegrable (f + g)
theorem
ComplexAbsolutelyIntegrable.add
{d : ℕ}
{f g : EuclideanSpace' d → ℂ}
(hf : ComplexAbsolutelyIntegrable f)
(hg : ComplexAbsolutelyIntegrable g)
:
ComplexAbsolutelyIntegrable (f + g)
theorem
RealAbsolutelyIntegrable.sub
{d : ℕ}
{f g : EuclideanSpace' d → ℝ}
(hf : RealAbsolutelyIntegrable f)
(hg : RealAbsolutelyIntegrable g)
:
RealAbsolutelyIntegrable (f - g)
theorem
ComplexAbsolutelyIntegrable.sub
{d : ℕ}
{f g : EuclideanSpace' d → ℂ}
(hf : ComplexAbsolutelyIntegrable f)
(hg : ComplexAbsolutelyIntegrable g)
:
ComplexAbsolutelyIntegrable (f - g)
theorem
RealAbsolutelyIntegrable.smul
{d : ℕ}
{f : EuclideanSpace' d → ℝ}
(hf : RealAbsolutelyIntegrable f)
(c : ℝ)
:
RealAbsolutelyIntegrable (c • f)
theorem
ComplexAbsolutelyIntegrable.smul
{d : ℕ}
{f : EuclideanSpace' d → ℂ}
(hf : ComplexAbsolutelyIntegrable f)
(c : ℂ)
:
ComplexAbsolutelyIntegrable (c • f)
theorem
RealAbsolutelyIntegrable.of_neg
{d : ℕ}
{f : EuclideanSpace' d → ℝ}
(hf : RealAbsolutelyIntegrable f)
:
theorem
ComplexAbsolutelyIntegrable.of_neg
{d : ℕ}
{f : EuclideanSpace' d → ℂ}
(hf : ComplexAbsolutelyIntegrable f)
:
theorem
ComplexAbsolutelyIntegrable.conj
{d : ℕ}
{f : EuclideanSpace' d → ℂ}
(hf : ComplexAbsolutelyIntegrable f)
:
- f : EuclideanSpace' d → ℂ
- integrable : ComplexAbsolutelyIntegrable self.f
Instances For
def
ComplexAbsolutelyIntegrable.to_PreL1
{d : ℕ}
{f : EuclideanSpace' d → ℂ}
(hf : ComplexAbsolutelyIntegrable f)
:
PreL1 d
Instances For
Equations
- One or more equations did not get rendered due to their size.
Equations
- One or more equations did not get rendered due to their size.
Equations
- PreL1.inst_normedSpace = { toModule := PreL1.inst_module, norm_smul_le := ⋯ }
Equations
- PreL1.inst_coeL1 = { coe := PreL1.toL1 }
def
ComplexAbsolutelyIntegrable.toL1
{d : ℕ}
{f : EuclideanSpace' d → ℂ}
(hf : ComplexAbsolutelyIntegrable f)
:
L1 d
Equations
- hf.toL1 = SeparationQuotient.mk hf.to_PreL1
Instances For
theorem
L1.dist_eq
{d : ℕ}
(f g : EuclideanSpace' d → ℂ)
(hf : ComplexAbsolutelyIntegrable f)
(hg : ComplexAbsolutelyIntegrable g)
:
theorem
L1.dist_eq_zero
{d : ℕ}
(f g : EuclideanSpace' d → ℂ)
(hf : ComplexAbsolutelyIntegrable f)
(hg : ComplexAbsolutelyIntegrable g)
:
theorem
RealAbsolutelyIntegrable.trans
{d : ℕ}
{f : EuclideanSpace' d → ℝ}
(hf : RealAbsolutelyIntegrable f)
(a : EuclideanSpace' d)
:
RealAbsolutelyIntegrable fun (x : EuclideanSpace' d) => f (x + a)
Exercise 1.3.20 (Translation invariance)
theorem
RealAbsolutelyIntegrable.integ_trans
{d : ℕ}
{f : EuclideanSpace' d → ℝ}
(hf : RealAbsolutelyIntegrable f)
(a : EuclideanSpace' d)
:
theorem
ComplexAbsolutelyIntegrable.trans
{d : ℕ}
{f : EuclideanSpace' d → ℂ}
(hf : ComplexAbsolutelyIntegrable f)
(a : EuclideanSpace' d)
:
ComplexAbsolutelyIntegrable fun (x : EuclideanSpace' d) => f (x + a)
theorem
ComplexAbsolutelyIntegrable.integ_trans
{d : ℕ}
{f : EuclideanSpace' d → ℂ}
(hf : ComplexAbsolutelyIntegrable f)
(a : EuclideanSpace' d)
:
theorem
RealAbsolutelyIntegrable.comp_linear
{d : ℕ}
{f : EuclideanSpace' d → ℝ}
(hf : RealAbsolutelyIntegrable f)
{A : EuclideanSpace' d →ₗ[ℝ] EuclideanSpace' d}
(hA : LinearMap.det A ≠ 0)
:
RealAbsolutelyIntegrable fun (x : EuclideanSpace' d) => f (A x)
Exercise 1.3.20 (Linear change of variables)
theorem
RealAbsolutelyIntegrable.integ_comp_linear
{d : ℕ}
{f : EuclideanSpace' d → ℝ}
(hf : RealAbsolutelyIntegrable f)
{A : EuclideanSpace' d →ₗ[ℝ] EuclideanSpace' d}
(hA : LinearMap.det A ≠ 0)
:
theorem
ComplexAbsolutelyIntegrable.comp_linear
{d : ℕ}
{f : EuclideanSpace' d → ℂ}
(hf : ComplexAbsolutelyIntegrable f)
{A : EuclideanSpace' d →ₗ[ℝ] EuclideanSpace' d}
(hA : LinearMap.det A ≠ 0)
:
ComplexAbsolutelyIntegrable fun (x : EuclideanSpace' d) => f (A x)
theorem
ComplexAbsolutelyIntegrable.integ_comp_linear
{d : ℕ}
{f : EuclideanSpace' d → ℂ}
(hf : ComplexAbsolutelyIntegrable f)
{A : EuclideanSpace' d →ₗ[ℝ] EuclideanSpace' d}
(hA : LinearMap.det A ≠ 0)
:
theorem
RiemannIntegrableOn.realAbsolutelyIntegrable
{I : BoundedInterval}
{f : ℝ → ℝ}
(hf : RiemannIntegrableOn f I)
:
RealAbsolutelyIntegrable ((fun (x : ℝ) => f x * (↑I).indicator' x) ∘ ⇑EuclideanSpace'.equiv_Real)
Exercise 1.3.20 (Compatibility with the Riemann integral)
theorem
AbsolutelySummable.realAbsolutelyIntegrable_iff
{a : ℤ → ℝ}
:
∑' (n : ℤ), ↑|a n| < ⊤ ↔ RealAbsolutelyIntegrable fun (x : EuclideanSpace' 1) => a ⌊EuclideanSpace'.equiv_Real x⌋
Exercise 1.3.21 (Absolute summability is a special case of absolute integrability)
theorem
AbsolutelySummable.complexAbsolutelyIntegrable_iff
{a : ℤ → ℂ}
:
∑' (n : ℤ), ↑‖a n‖ < ⊤ ↔ ComplexAbsolutelyIntegrable fun (x : EuclideanSpace' 1) => a ⌊EuclideanSpace'.equiv_Real x⌋
def
ComplexAbsolutelyIntegrableOn
{d : ℕ}
(f : EuclideanSpace' d → ℂ)
(E : Set (EuclideanSpace' d))
:
Equations
Instances For
noncomputable def
ComplexAbsolutelyIntegrableOn.integ
{d : ℕ}
{f : EuclideanSpace' d → ℂ}
{E : Set (EuclideanSpace' d)}
(hf : ComplexAbsolutelyIntegrableOn f E)
:
Equations
Instances For
theorem
ComplexAbsolutelyIntegrableOn.glue
{d : ℕ}
{f : EuclideanSpace' d → ℂ}
{E F : Set (EuclideanSpace' d)}
(hdisj : Disjoint E F)
(hf : ComplexAbsolutelyIntegrableOn f (E ∪ F))
:
∃ (hE : ComplexAbsolutelyIntegrableOn f E) (hF : ComplexAbsolutelyIntegrableOn f F), hf.integ = hE.integ + hF.integ
Exercise 1.3.22
def
ComplexAbsolutelyIntegrableOn.restrict
{d : ℕ}
{f : EuclideanSpace' d → ℂ}
{E F : Set (EuclideanSpace' d)}
(hf : ComplexAbsolutelyIntegrableOn f E)
(hF : LebesgueMeasurable F)
:
Equations
- ⋯ = ⋯
Instances For
def
ComplexAbsolutelyIntegrableOn.mono
{d : ℕ}
{f : EuclideanSpace' d → ℂ}
{E F : Set (EuclideanSpace' d)}
(hf : ComplexAbsolutelyIntegrableOn f E)
(hE : LebesgueMeasurable E)
(hF : LebesgueMeasurable F)
(hsub : F ⊆ E)
:
Equations
- ⋯ = ⋯
Instances For
theorem
ComplexAbsolutelyIntegrableOn.integ_restrict
{d : ℕ}
{f : EuclideanSpace' d → ℂ}
{E F : Set (EuclideanSpace' d)}
(hE : LebesgueMeasurable E)
(hF : LebesgueMeasurable F)
(hsub : F ⊆ E)
(hf : ComplexAbsolutelyIntegrableOn f E)
:
theorem
ComplexAbsolutelyIntegrable.abs_le
{d : ℕ}
{f : EuclideanSpace' d → ℂ}
(hf : ComplexAbsolutelyIntegrable f)
:
Lemma 1.3.19 (Triangle inequality)