Documentation

Analysis.MeasureTheory.Section_1_3_4

Introduction to Measure Theory, Section 1.3.4: Absolute integrability #

A companion to (the introduction to) Section 1.3.4 of the book "An introduction to Measure Theory".

Equations
  • =
Instances For
    Equations
    • =
    Instances For
      Equations
      Instances For
        noncomputable def RealLebesgueIntegral {d : } (f : EuclideanSpace' d) :
        Equations
        Instances For
          noncomputable def ComplexLebesgueIntegral {d : } (f : EuclideanSpace' d) :
          Equations
          Instances For
            Equations
            • =
            Instances For
              Equations
              • =
              Instances For
                structure PreL1 (d : ) :
                Instances For
                  theorem PreL1.ext_iff {d : } {x y : PreL1 d} :
                  x = y x.f = y.f
                  theorem PreL1.ext {d : } {x y : PreL1 d} (f : x.f = y.f) :
                  x = y
                  noncomputable def PreL1.norm {d : } {X : Type u_1} [RCLike X] (f : EuclideanSpace' dX) :
                  Equations
                  Instances For
                    Equations
                    Instances For
                      def PreL1.conj {d : } (F : PreL1 d) :
                      Equations
                      Instances For
                        Equations
                        Equations
                        • One or more equations did not get rendered due to their size.
                        instance PreL1.inst_Neg {d : } :
                        Equations
                        instance PreL1.inst_module {d : } :
                        Equations
                        • PreL1.inst_module = { smul := fun (c : ) (F : PreL1 d) => { f := c F.f, integrable := }, one_smul := , mul_smul := , smul_zero := , smul_add := , add_smul := , zero_smul := }
                        Equations
                        • One or more equations did not get rendered due to their size.
                        Equations
                        theorem PreL1.dist_eq {d : } (F G : PreL1 d) :
                        dist F G = F - G
                        @[reducible, inline]
                        noncomputable abbrev L1 (d : ) :
                        Equations
                        Instances For
                          def PreL1.toL1 {d : } (F : PreL1 d) :
                          L1 d
                          Equations
                          Instances For
                            instance PreL1.inst_coeL1 {d : } :
                            Coe (PreL1 d) (L1 d)
                            Equations
                            noncomputable def L1.integ {d : } :

                            Exercise 1.3.19 (Integration is linear)

                            Equations
                            Instances For
                              noncomputable def L1.conj {d : } :
                              L1 dL1 d
                              Equations
                              Instances For
                                theorem L1.integ_conj {d : } (F : L1 d) :

                                Exercise 1.3.20 (Translation invariance)

                                Exercise 1.3.20 (Linear change of variables)

                                Exercise 1.3.20 (Compatibility with the Riemann integral)

                                Exercise 1.3.21 (Absolute summability is a special case of absolute integrability)

                                Exercise 1.3.22

                                Equations
                                • =
                                Instances For