Introduction to Measure Theory, Section 1.3.5: Littlewood's three principles #
A companion to (the introduction to) Section 1.3.5 of the book "An introduction to Measure Theory".
theorem
ComplexAbsolutelyIntegrable.approx_by_simple
{d : ℕ}
{f : EuclideanSpace' d → ℂ}
(hf : ComplexAbsolutelyIntegrable f)
(ε : ℝ)
(hε : 0 < ε)
:
∃ (g : EuclideanSpace' d → ℂ), ComplexSimpleFunction g ∧ ComplexAbsolutelyIntegrable g ∧ PreL1.norm (f - g) ≤ ↑ε
Theorem 1.3.20(i) Approximation of $L^1$ functions by simple functions
theorem
RealAbsolutelyIntegrable.approx_by_simple
{d : ℕ}
{f : EuclideanSpace' d → ℝ}
(hf : RealAbsolutelyIntegrable f)
(ε : ℝ)
(hε : 0 < ε)
:
∃ (g : EuclideanSpace' d → ℝ), RealSimpleFunction g ∧ RealAbsolutelyIntegrable g ∧ PreL1.norm (f - g) ≤ ↑ε
theorem
ComplexAbsolutelyIntegrable.approx_by_step
{d : ℕ}
{f : EuclideanSpace' d → ℂ}
(hf : ComplexAbsolutelyIntegrable f)
(ε : ℝ)
(hε : 0 < ε)
:
∃ (g : EuclideanSpace' d → ℂ), ComplexStepFunction g ∧ ComplexAbsolutelyIntegrable g ∧ PreL1.norm (f - g) ≤ ↑ε
Theorem 1.3.20(ii) Approximation of $L^1$ functions by step functions
theorem
RealAbsolutelyIntegrable.approx_by_step
{d : ℕ}
{f : EuclideanSpace' d → ℝ}
(hf : RealAbsolutelyIntegrable f)
(ε : ℝ)
(hε : 0 < ε)
:
∃ (g : EuclideanSpace' d → ℝ), RealStepFunction g ∧ RealAbsolutelyIntegrable g ∧ PreL1.norm (f - g) ≤ ↑ε
Instances For
theorem
ComplexAbsolutelyIntegrable.approx_by_continuous_compact
{d : ℕ}
{f : EuclideanSpace' d → ℂ}
(hf : ComplexAbsolutelyIntegrable f)
(ε : ℝ)
(hε : 0 < ε)
:
∃ (g : EuclideanSpace' d → ℂ), Continuous g ∧ CompactlySupported g ∧ PreL1.norm (f - g) ≤ ↑ε
Theorem 1.3.20(iii) Approximation of $L^1$ functions by continuous compactly supported functions
theorem
RealAbsolutelyIntegrable.approx_by_continuous_compact
{d : ℕ}
{f : EuclideanSpace' d → ℝ}
(hf : RealAbsolutelyIntegrable f)
(ε : ℝ)
(hε : 0 < ε)
:
∃ (g : EuclideanSpace' d → ℝ), Continuous g ∧ CompactlySupported g ∧ PreL1.norm (f - g) ≤ ↑ε
def
UniformlyConvergesTo
{X : Type u_1}
{Y : Type u_2}
[PseudoMetricSpace Y]
(f : ℕ → X → Y)
(g : X → Y)
:
Equations
- UniformlyConvergesTo f g = ∀ ε > 0, ∃ (N : ℕ), ∀ n ≥ N, ∀ (x : X), dist (f n x) (g x) ≤ ε
Instances For
def
UniformlyConvergesToOn
{X : Type u_1}
{Y : Type u_2}
[PseudoMetricSpace Y]
(f : ℕ → X → Y)
(g : X → Y)
(S : Set X)
:
Equations
- UniformlyConvergesToOn f g S = UniformlyConvergesTo (fun (n : ℕ) (x : ↑S) => f n ↑x) fun (x : ↑S) => g ↑x
Instances For
def
LocallyUniformlyConvergesTo
{X : Type u_1}
{Y : Type u_2}
[PseudoMetricSpace X]
[PseudoMetricSpace Y]
(f : ℕ → X → Y)
(g : X → Y)
:
Definition 1.3.21 (Locally uniform convergence)
Equations
- LocallyUniformlyConvergesTo f g = ∀ (K : Set X), Bornology.IsBounded K → UniformlyConvergesToOn f g K
Instances For
theorem
LocallyUniformlyConvergesTo.iff
{d : ℕ}
{Y : Type u_1}
[PseudoMetricSpace Y]
(f : ℕ → EuclideanSpace' d → Y)
(g : EuclideanSpace' d → Y)
:
LocallyUniformlyConvergesTo f g ↔ ∀ (x₀ : EuclideanSpace' d), ∃ (U : Set (EuclideanSpace' d)), x₀ ∈ U ∧ IsOpen U → UniformlyConvergesToOn f g U
Remark 1.3.22
def
LocallyUniformlyConvergesToOn
{X : Type u_1}
{Y : Type u_2}
[PseudoMetricSpace X]
[PseudoMetricSpace Y]
(f : ℕ → X → Y)
(g : X → Y)
(S : Set X)
:
Equations
- LocallyUniformlyConvergesToOn f g S = LocallyUniformlyConvergesTo (fun (n : ℕ) (x : ↑S) => f n ↑x) fun (x : ↑S) => g ↑x
Instances For
theorem
PointwiseAeConvergesTo.locallyUniformlyConverges_outside_small
{d : ℕ}
{f : ℕ → EuclideanSpace' d → ℂ}
{g : EuclideanSpace' d → ℂ}
(hf : ∀ (n : ℕ), ComplexMeasurable (f n))
(hfg : PointwiseAeConvergesTo f g)
(ε : ℝ)
(hε : 0 < ε)
:
∃ (E : Set (EuclideanSpace' d)), MeasurableSet E ∧ Lebesgue_measure E ≤ ↑ε ∧ LocallyUniformlyConvergesToOn f g Eᶜ
Theorem 1.3.26 (Egorov's theorem)
theorem
PointwiseAeConvergesTo.uniformlyConverges_outside_small
{d : ℕ}
{f : ℕ → EuclideanSpace' d → ℂ}
{g : EuclideanSpace' d → ℂ}
(hf : ∀ (n : ℕ), ComplexMeasurable (f n))
(hfg : PointwiseAeConvergesTo f g)
(S : Set (EuclideanSpace' d))
(hS : Lebesgue_measure S < ⊤)
(ε : ℝ)
(hε : 0 < ε)
:
∃ (E : Set (EuclideanSpace' d)), MeasurableSet E ∧ Lebesgue_measure E ≤ ↑ε ∧ UniformlyConvergesToOn f g (Sᶜ ∪ E)
But uniform convergence can be recovered on a fixed set of finite measure
theorem
ComplexAbsolutelyIntegrable.approx_by_continuous_outside_small
{d : ℕ}
{f : EuclideanSpace' d → ℂ}
(hf : ComplexAbsolutelyIntegrable f)
(ε : ℝ)
(hε : 0 < ε)
:
∃ (g : EuclideanSpace' d → ℂ) (E : Set (EuclideanSpace' d)),
ContinuousOn g Eᶜ ∧ MeasurableSet E ∧ Lebesgue_measure E ≤ ↑ε ∧ ∀ x ∉ E, g x = f x
Theorem 1.3.28 (Lusin's theorem)
Equations
- LocallyComplexAbsolutelyIntegrable f = ∀ (S : Set (EuclideanSpace' d)), MeasurableSet S ∧ Bornology.IsBounded S → ComplexAbsolutelyIntegrableOn f S
Instances For
theorem
LocallyComplexAbsolutelyIntegrable.approx_by_continuous_outside_small
{d : ℕ}
{f : EuclideanSpace' d → ℂ}
(hf : LocallyComplexAbsolutelyIntegrable f)
(ε : ℝ)
(hε : 0 < ε)
:
∃ (g : EuclideanSpace' d → ℂ) (E : Set (EuclideanSpace' d)),
ContinuousOn g Eᶜ ∧ MeasurableSet E ∧ Lebesgue_measure E ≤ ↑ε ∧ ∀ x ∉ E, g x = f x
Exercise 1.3.23 (Lusin's theorem only requires local absolute integrability )
theorem
ComplexMeasurable.approx_by_continuous_outside_small
{d : ℕ}
{f : EuclideanSpace' d → ℂ}
(hf : ComplexMeasurable f)
(ε : ℝ)
(hε : 0 < ε)
:
∃ (g : EuclideanSpace' d → ℂ) (E : Set (EuclideanSpace' d)),
ContinuousOn g Eᶜ ∧ MeasurableSet E ∧ Lebesgue_measure E ≤ ↑ε ∧ ∀ x ∉ E, g x = f x
theorem
ComplexMeasurable.iff_pointwiseae_of_continuous
{d : ℕ}
{f : EuclideanSpace' d → ℂ}
:
ComplexMeasurable f ↔ ∃ (g : ℕ → EuclideanSpace' d → ℂ), (∀ (n : ℕ), Continuous (g n)) ∧ PointwiseAeConvergesTo g f
Exercise 1.3.24
theorem
UnsignedMeasurable.approx_by_continuous_outside_small
{d : ℕ}
{f : EuclideanSpace' d → EReal}
(hf : UnsignedMeasurable f)
(hfin : AlmostAlways fun (x : EuclideanSpace' d) => f x < ⊤)
(ε : ℝ)
(hε : 0 < ε)
:
∃ (g : EuclideanSpace' d → ℝ) (E : Set (EuclideanSpace' d)),
ContinuousOn g Eᶜ ∧ MeasurableSet E ∧ Lebesgue_measure E ≤ ↑ε ∧ ∀ x ∉ E, ↑(g x) = f x
Remark 1.3.29
theorem
ComplexAbsolutelyIntegrable.almost_bounded_support
{d : ℕ}
{f : EuclideanSpace' d → ℂ}
(hf : ComplexAbsolutelyIntegrable f)
(ε : ℝ)
(hε : 0 < ε)
:
∃ (R : ℝ), PreL1.norm (f * Complex.indicator (Metric.ball 0 R)ᶜ) ≤ ↑ε
Exercise 1.3.25 (a) (Littlewood-like principle)
theorem
ComplexAbsolutelyIntegrable.almost_bounded
{d : ℕ}
{f : EuclideanSpace' d → ℂ}
(hf : ComplexAbsolutelyIntegrable f)
(ε : ℝ)
(hε : 0 < ε)
:
∃ (E : Set (EuclideanSpace' d)), MeasurableSet E ∧ Lebesgue_measure E ≤ ↑ε ∧ BoundedOn f Eᶜ
Exercise 1.3.25 (b) (Littlewood-like principle)