Documentation

Analysis.MeasureTheory.Section_1_3_5

Introduction to Measure Theory, Section 1.3.5: Littlewood's three principles #

A companion to (the introduction to) Section 1.3.5 of the book "An introduction to Measure Theory".

Theorem 1.3.20(i) Approximation of $L^1$ functions by simple functions

Equations
Instances For
    Equations
    Instances For

      Theorem 1.3.20(ii) Approximation of $L^1$ functions by step functions

      def CompactlySupported {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [Zero Y] (f : XY) :
      Equations
      Instances For

        Theorem 1.3.20(iii) Approximation of $L^1$ functions by continuous compactly supported functions

        def UniformlyConvergesTo {X : Type u_1} {Y : Type u_2} [PseudoMetricSpace Y] (f : XY) (g : XY) :
        Equations
        Instances For
          def UniformlyConvergesToOn {X : Type u_1} {Y : Type u_2} [PseudoMetricSpace Y] (f : XY) (g : XY) (S : Set X) :
          Equations
          Instances For
            def LocallyUniformlyConvergesTo {X : Type u_1} {Y : Type u_2} [PseudoMetricSpace X] [PseudoMetricSpace Y] (f : XY) (g : XY) :

            Definition 1.3.21 (Locally uniform convergence)

            Equations
            Instances For
              theorem LocallyUniformlyConvergesTo.iff {d : } {Y : Type u_1} [PseudoMetricSpace Y] (f : EuclideanSpace' dY) (g : EuclideanSpace' dY) :

              Remark 1.3.22

              def LocallyUniformlyConvergesToOn {X : Type u_1} {Y : Type u_2} [PseudoMetricSpace X] [PseudoMetricSpace Y] (f : XY) (g : XY) (S : Set X) :
              Equations
              Instances For

                Theorem 1.3.26 (Egorov's theorem)

                theorem PointwiseAeConvergesTo.uniformlyConverges_outside_small {d : } {f : EuclideanSpace' d} {g : EuclideanSpace' d} (hf : ∀ (n : ), ComplexMeasurable (f n)) (hfg : PointwiseAeConvergesTo f g) (S : Set (EuclideanSpace' d)) (hS : Lebesgue_measure S < ) (ε : ) ( : 0 < ε) :

                But uniform convergence can be recovered on a fixed set of finite measure

                Theorem 1.3.28 (Lusin's theorem)

                Exercise 1.3.23 (Lusin's theorem only requires local absolute integrability )

                theorem ComplexMeasurable.approx_by_continuous_outside_small {d : } {f : EuclideanSpace' d} (hf : ComplexMeasurable f) (ε : ) ( : 0 < ε) :
                ∃ (g : EuclideanSpace' d) (E : Set (EuclideanSpace' d)), ContinuousOn g E MeasurableSet E Lebesgue_measure E ε xE, g x = f x
                theorem UnsignedMeasurable.approx_by_continuous_outside_small {d : } {f : EuclideanSpace' dEReal} (hf : UnsignedMeasurable f) (hfin : AlmostAlways fun (x : EuclideanSpace' d) => f x < ) (ε : ) ( : 0 < ε) :
                ∃ (g : EuclideanSpace' d) (E : Set (EuclideanSpace' d)), ContinuousOn g E MeasurableSet E Lebesgue_measure E ε xE, (g x) = f x

                Remark 1.3.29

                Exercise 1.3.25 (a) (Littlewood-like principle)

                def BoundedOn {X : Type u_1} {Y : Type u_2} [PseudoMetricSpace Y] (f : XY) (S : Set X) :
                Equations
                Instances For

                  Exercise 1.3.25 (b) (Littlewood-like principle)