Analytic Number Theory Exponent Database

5 Exponent pairs

Definition 5.1 Exponent pair

An exponent pair is a (fixed) element (k,) of the triangle

{(k,)R2:0k1/21,k+1}
1

with the following property: for all model phase functions F, all TN1, and all intervals I[N,2N], one has

nIe(TF(n/N))(T/N)k+o(1)N+o(1)
2

whenever TN1, I is an interval in [N,2N], and FU.

Implemented at exponent_pair.py as:
Exp_pair

One can formulate the notion of an exponent pair without recourse to asymptotic notation:

Lemma 5.2 Non-asymptotic definition of exponent pair

Let (k,) be a fixed element of 1. Then the following are equivalent:

  • (k,) is an exponent pair.

  • For every (fixed) ε>0 there exist (fixed) C,P>0 such that, whenever TN1, I[N,2N], and F is a phase function obeying 3 for for all (fixed) 0pP and u[1,2], then

    |nIe(TF(n/N))|C(T/N)k+εN+ε.

The proof of this lemma is similar to that of Lemma 4.3 and is omitted.

Exponent pairs are closely related to the function β from the previous chapter:

Lemma 5.3 Duality between exponent pairs and β

Let (k,) be in the triangle 1. Then the following are equivalent:

  • (k,) is an exponent pair.

  • β(α)k+(k)α for all 0α1.

Implemented at exponent_pair.py as:
exponent_pairs_to_beta_bounds()
beta_bounds_to_exponent_pairs()

Thus exponent pairs are dual to the convex hull of the graph of β. But β is not known to be convex, so one could have bounds on β that do not directly correspond to exponent pairs. We remark that in the case k1/2, one only needs to check the case 0α1/2 in (ii) above, since the remaining regime 1/2α1 then follows from Lemma 4.10 and some algebra. Conversely, if k1/2, one only needs to check the region 1/2α1.

Proof
Corollary 5.4 Exponent pairs closed and convex

The set of exponent pairs is closed and convex.

Proof
Proposition 5.5 Trivial exponent pairs

(0,1) and (1/2,1/2) are exponent pairs.

Implemented at exponent_pair.py as:
trivial_exp_pair

Proof
Heuristic 5.6 Exponent pairs conjecture

(0,1/2) is an exponent pair. (Equivalently, by Corollary 5.4 and Proposition 5.5, every point in the triangle 1 is an exponent pair.)

Implemented at exponent_pair.py as:
exponent_pair_conjecture

The exponent pair conjecture is equivalent to β(α)=α/2 holding true for all 0α1.

Proof
Proposition 5.8 Van der Corput A-process

If (k,) is an exponent pair, then so is

A(k,):=(k2k+2,2k+2+12).

Recorded in literature.py as:
A_transform_hypothesis

Proof
Proposition 5.9 Van der Corput B-process

If (k,) is an exponent pair, then so is

B(k,):=(12,k+12).

Recorded in literature.py as:
B_transform_hypothesis

Proof

5.1 Known exponent pairs

Proposition 5.10 Classical van der Corput exponent pairs

For any natural number k2,

Ak2B(0,1)=(12k2,1k12k2)

is an exponent pair. In particular,

(12,12),(16,23),(114,1114)

are exponent pairs.

Proof

Derived in derived.py as:
van_der_corput_pair()

Corollary 5.11 Additional exponent pairs

The pairs

(1331,1631),(411,611),(27,47),(524,1524),(418,1118)

are all exponent pairs.

Derived in derived.py as:
best_proof_of_exponent_pair(frac(13, 31), frac(16, 31))
best_proof_of_exponent_pair(frac(4, 11), frac(6, 11))
best_proof_of_exponent_pair(frac(2, 7), frac(4, 7))
best_proof_of_exponent_pair(frac(5, 24), frac(15, 24))
best_proof_of_exponent_pair(frac(4, 18), frac(11, 18))

Proof
Theorem 5.12 Exponent pairs on the line of symmetry

(k,k+1/2) is an exponent pair for

  • k=9/56 [ 76 , Theorem 1 ] ;

  • k=89/560 [ 173 , Theorem 6 ] ;

  • k=17/108 [ 74 , p. 467 ] ;

  • k=89/570 [ 70 , p. 40 ] ;

  • k=32/205 [ 73 , Theorem 1 ] ;

  • k=13/84 [ 14 , p. 206 ] .

Recorded in literature.py as:
add_literature_exponent_pairs()

Theorem 5.13 Exponent pairs from the Bombieri–Iwaniec method

The following pairs are exponent pairs:

  • (213,3552) [ 77 ] ;

  • (629943860,2950743860) [ 71 , Table 17.3 ] ;

  • (7718116,14992029) [ 156 , p. 285 ] ;

  • (21232,173232) [ 156 , p. 286 ] ;

  • (195921656,1613521656) [ 156 , p. 286 ] ;

  • (5162476629696,50809556629696) [ 81 ] , [ 71 , Table 19.2 ] , [ 148 ] .

Recorded in literature.py as:
add_literature_exponent_pairs()

Theorem 5.14 Exponent pairs from derivative tests

(k,1mk) is an exponent pair when

  • k=113 and m=3 [ 148 , Theorem 1 ] ;

  • k=1204 and m=7 [ 157 , p. 231 ] ;

  • k=1130 and m=8 [ 147 , (1.1) ] ;

  • k=72640 and m=8 [ 157 , p. 231 ] ;

  • k=1716 and m=9 [ 157 , p. 231 ] ;

  • k=1649 and m=9 [ 153 ] ;

  • k=74540 and m=9 [ 147 , (1.2) ] ;

  • k=1615 and m=9 [ 147 , (1.1) ] ;

  • k=1915 and m=10 [ 150 , Th é or è me 2 ] .

Recorded in literature.py as:
add_literature_exponent_pairs()

Theorem 5.15 Huxley sequence

[ 71 , Table 17.3 ] For any integer m1, the pair

(1691424×2m338,11691424×2m338712m+1577712)

is an exponent pair.

Recorded in literature.py as:
add_huxley_exponent_pairs(Constants.EXP_PAIR_TRUNCATION)

Theorem 5.16 1996 Heath–Brown sequence

[ 168 , (6.17.4) ] For any integer m3, the pair

(125m2(m2)logm,1125m2(m2)logm)

is an exponent pair.

(Currently not implemented in python due to the irrational exponents.)

Theorem 5.17 2017 Heath–Brown sequence

[ 63 , Theorem 2 ] For any integer m3, the pair

(pm,qm):=(2(m1)2(m+2),13m2m(m1)(m+2))

is an exponent pair.

Recorded in literature.py as:
add_heath_brown_exponent_pairs(Constants.EXP_PAIR_TRUNCATION)

Proof
Theorem 5.18 Sargos C-process

[ 157 , Theorem 5 ] If (k,) is an exponent pair, then so is

(k12(1+4k),11(1+4k)+12(1+4k)).

Recorded in literature.py as:
C_transform_hypothesis

The following process is not quite a process to automatically transform one exponent pair to another, but it often achieves this in practice:

Theorem 5.19 Sargos D-process

[ 156 , Theorem 7.1 ] If (k,) is an exponent pair, then one has

β(α)max(k1+α(1k1),112+23α)

for all 0α1, where (k1,1)=D(k,) is the pair

D(k,):=(5k++28(5k+3+2),29k+21+108(5k+3+2)).

Recorded in literature.py as:
D_transform_hypothesis

[ 169 , Lemma 1.1 ] The following are exponent pairs:

(k1,1):=(474238463,3573151284)(k2,2):=(18199,593796)(k3,3):=(277938033,5869976066)(k4,4):=(71510238,795510238).

Recorded in literature.py as:
add_literature_exponent_pairs()

Proof
Corollary 5.21 Set of exponent pairs

[ 169 , Theorem 1.3 ] Let H be the convex hull (0,1), (1/2,1/2), and of (kn,n) for nZ, where (k0,0):=13/84, (kn,n) for n=1,2,3,4 is defined by Theorem 5.20, (kn,n):=A(kn4,n4) for 5n8, (kn,n):=(pn,qn) for n>9 (with (pn,qn) defined by Theorem 5.17), and (kn,n):=B(kn,n) for n0. Then all elements of H are exponent pairs.

Indeed, as of [ 169 ] the set H represented all known exponent pairs, until Theorem 5.22 below.

Proof

The following new exponent pairs were derived using this database:

Theorem 5.22 New exponent pairs

The following are exponent pairs:

(891282,9971282),(6523979713986,75997819713986),(10769351096,609317702192),(893478,1532717390).

Derived in derived.py as:
prove_exponent_pair(frac(89,1282), frac(997,1282))
prove_exponent_pair(frac(652397,9713986), frac(7599781,9713986))
prove_exponent_pair(frac(10769,351096), frac(609317,702192))
prove_exponent_pair(frac(89,3478), frac(15327,17390))

Proof

Furthermore, more exponent pairs can be derived upon incorporating Lemma 4.6.

Theorem 5.23 More new exponent pairs
#

The following are exponent pairs:

(3114822,37994822),(802191298878,515638649439).

Implemented at examples.py as:
beta_bound_examples2()

In summary, the current set of known exponent pairs is the convex hull with vertices (0,1), (1/2,1/2) and the points (kn,n) for nZ that are recorded in Table 5.23.

Table 5.2 Vertices of the convex hull of known exponent pairs.

n

(kn,n)

Reference

0

(1384,5584)

[ 14 , p. 307 ]

1

(474238463,3573151284)

Theorem 5.20

2

(18199,593796)

Theorem 5.20

3

(277938033,5869976066)

Theorem 5.20

4

(891282,9971282)

Theorem 5.22

5

(6523979713986,75997819713986)

Theorem 5.22

6

(237143205,280013345640)

A(k1,1)

7

(9217,14611736)

A(k2,2)

8

(10769351096,609317702192)

Theorem 5.22

9

(893478,1532717390)

Theorem 5.22

n10

(pn4,qn4), where

(pm,qm)=(2(m1)2(m+2),13m2m(m1)(m+2))

Theorem 5.17

n<0

B(kn,n)

Proposition 5.9

\includegraphics[width=0.5\linewidth ]{chapter/exp_pair_plot.png}
Figure 5.1 The convex hull of known exponent pairs, whose vertices (kn,n) are given in Table 5.23.