Analytic Number Theory Exponent Database

12 Zero density energy theorems

Definition 12.1 Zero density exponents
#

For \(1/2 \leq \sigma \leq 1\) and \(T{\gt}0\), let \(N^*(\sigma ,T)\) denote the additive energy \(E_1(\Sigma )\) of the imaginary parts of the zeroes \(\rho \) of the Riemann zeta function with \(\mathrm{Re}(\rho ) \geq \sigma \) and \(|\mathrm{Im}(\rho )| \leq T\). For fixed \(1/2 \leq \sigma \leq 1\), the zero density exponent \(A^*(\sigma ) \in [-\infty ,\infty )\) is the infimum of all exponents \(\mathrm{A}^*\) for which one has

\[ N^*(\sigma -\delta ,T) \ll T^{A^* (1-\sigma )+o(1)} \]

for all unbounded \(T\) and infinitesimal \(\delta {\gt}0\).

The exponent \(\mathrm{A}^*(\sigma )\) is also essentially referred to as \(B(\sigma )\) in [ 104 ] (though without the technical shift by \(\delta \) in that reference).

Implemented at zero_density_energy_estimate.py as:
Zero_Density_Energy_Estimate

Lemma 12.2 Basic properties of \(\mathrm{A}^*\)
  • We have the trivial bounds

    \[ 2\mathrm{A}(\sigma ), 4\mathrm{A}(\sigma )-\frac{1}{1-\sigma } \leq \mathrm{A}^*(\sigma ) \leq 3 \mathrm{A}(\sigma ) \]

    for any \(1/2 \leq \sigma \leq 1\).

  • \(\sigma \mapsto (1-\sigma ) \mathrm{A}^*(\sigma )\) is non-increasing, with \(\mathrm{A}^*(1/2)=6\) and \(\mathrm{A}^*(1)=-\infty \).

  • If the Riemann hypothesis holds, then \(\mathrm{A}^*(\sigma )=-\infty \) for all \(1/2 {\lt} \sigma \leq 1\).

Implemented at zero_density_energy_estimate.py as:
add_trivial_zero_density_energy_estimates(hypotheses)

Proof

The claim (i) follows from Lemma 10.2(iv), and the remaining claims then follow from Lemma 11.2.

Upper bounds on \(\mathrm{A}^*(\sigma )\) can be obtained from large value energy theorems via the following relation.

Lemma 12.3 Zero density energy from large values energy

Let \(1/2 {\lt} \sigma {\lt} 1\). Then

\[ \mathrm{A}^*(\sigma )(1-\sigma ) \leq \max \left( \sup _{\tau \geq 1} \mathrm{LV}^*_\zeta (\sigma ,\tau )/\tau , \limsup _{\tau \to \infty } \mathrm{LV}^*(\sigma ,\tau )/\tau \right). \]
Proof

Write the right-hand side as \(B\), then \(B \geq 0\) (from Lemma 10.11(iii)) and we have

\begin{equation} \label{lvze-bound} \mathrm{LV}^*_\zeta (\sigma ,\tau ) \leq B \tau \end{equation}
1

for all \(\tau \geq 1\), and

\begin{equation} \label{lve-bound} \mathrm{LV}^*(\sigma ,\tau ) \leq (B+\varepsilon ) \tau \end{equation}
2

whenever \(\varepsilon {\gt}0\) and \(\tau \) is sufficiently large depending on \(\varepsilon \) (and \(\sigma \)). It would suffice to show, for any \(\varepsilon {\gt}0\), that \(N^*(\sigma ,T) \ll T^{B+O(\varepsilon )+o(1)}\) for unbounded \(T\).

By dyadic decomposition, it suffices to show for unbounded \(T\) that the additive energy of imaginary parts of zeroes in \([T,2T]\) is \(\ll T^{B+O(\varepsilon )+o(1)}\). As in the proof of Lemma 11.5, we can assume the imaginary parts are \(1\)-separated (here we take advantage of the triangle inequality in Lemma 10.2(iii)).

Suppose that one has a zero \(\sigma '+i t\) of this form. Then by standard approximations to the zeta function, one has

\[ \sum _{n \leq T} \frac{1}{n^{\sigma '+it}} \ll T^{-1}. \]

Let \(0 {\lt} \delta _1 {\lt} \varepsilon \) be a small quantity (independent of \(T\)) to be chosen later, and let \(0 {\lt} \delta _2 {\lt} \delta _1\) be sufficiently small depending on \(\delta _1,\delta _2\). By the triangle inequality, and refining the sequence \(t'\) by a factor of at most \(2\), we either have

\[ \bigg|\sum _{T^{\delta _1} \leq n \leq T} \frac{1}{n^{\sigma '+it}} \bigg| \gg T^{-\delta _2} \]

for all zeroes, or 3 for all zeroes.

Suppose we are in the former (“Type I”) case, we can dyadically partition and conclude from the pigeonhole principle that

\[ \bigg| \sum _{n \in I} \frac{1}{n^{\sigma '+it}} \bigg| \gg T^{-\delta _2-o(1)} \]

for some interval \(I\) in some \([N,2N]\) with \(T^{\delta _1} \ll N \ll T\), with at most \(O(\log T)\) different choices for \(I\). Performing a Fourier expansion of \(n^{\sigma '}\) in \(\log n\) and using the triangle inequality one can then deduce that

\[ \bigg| \sum _{n \in I} \frac{1}{n^{it'}} \bigg| \gg N^{\sigma '} T^{-\delta _2-o(1)} \]

for some \(t' = t + O(T^{o(1)})\); refining the \(t\) by a factor of \(T^{o(1)}\) if necessary, we may assume that the \(t'\) are \(1\)-separated and that the interval \(I\) is independent of \(t'\), and by passing to a subsequence we may assume that \(T = N^{\tau +o(1)}\) for some \(1 \leq \tau \leq 1/\delta _1\), then

\[ \bigg| \sum _{n \in I} \frac{1}{n^{it'}} \bigg| \gg N^{\sigma -\delta _2/\delta _1+o(1)} \]

for all \(t'\). If we let \(\Sigma '\) denote the set of such \(t'\), then by Definition 10.9 we then have (for \(\delta _2\) small enough) we have

\[ E_1(\Sigma ') \ll N^{\mathrm{LV}^*_\zeta (\sigma ,\tau ) + \varepsilon + o(1)} \ll T^{\mathrm{LV}^*_\zeta (\sigma ,\tau )/\tau + \varepsilon + o(1)}. \]

By Lemma 10.2(i) this implies that the set \(\Sigma \) of imaginary parts of zeroes under consideration also obeys the bound

\[ E_1(\Sigma ) \ll T^{\mathrm{LV}^*_\zeta (\sigma ,\tau )/\tau + \varepsilon + o(1)}. \]

and the claim follows in this case from 1.

The Type II case similarly follows from 2 exactly as in the proof of Lemma 11.5.

Corollary 12.4

Let \(1/2 {\lt} \sigma {\lt} 1\) and \(\tau _0 {\gt} 0\) be fixed. Then

\[ \mathrm{A}^*(\sigma )(1-\sigma ) \leq \max \left(\sup _{2 \leq \tau {\lt} \tau _0} \mathrm{LV}^*_\zeta (\sigma ,\tau )/\tau , \sup _{\tau _0 \leq \tau \leq 2\tau _0} \mathrm{LV}^*(\sigma ,\tau )/\tau \right) \]

Implemented at zero_density_energy_estimate.py as:
lver_to_energy_bound(LVER, LVER_zeta, sigma_interval)

Proof

Repeat the proof of Corollary 11.7.

12.1 Known additive energy bounds

Proposition 12.5 Additive energy under the Lindelof hypothesis

Let \(1/2 \leq \sigma \leq 1\) be fixed. Then one has

\[ \mathrm{A}^*(\sigma ) \leq 8 - 4\sigma \]

and \(\mathrm{A}^*(\sigma ) \leq 0\) if \(\sigma {\gt} 3/4\).

Proof

See [ 104 , Lemma 4 ] .

[ 107 , Theorem 2 ] Let \(1/2 \leq \sigma \leq 1\) be fixed. Then one can bound \(A^*(\sigma )\) by

\begin{align*} \frac{10-11\sigma }{(2-\sigma )(1-\sigma )} & \hbox{ for } 1/2 \leq \sigma \leq 2/3;\\ \frac{18-19\sigma }{(4-2\sigma )(1-\sigma )} & \hbox{ for } 2/3 \leq \sigma \leq 3/4;\\ \frac{12}{4\sigma -1} & \hbox{ for } 3/4 \leq \sigma \leq 1. \end{align*}

Recorded in literature.py as:
add_zero_density_energy_heath_brown_1979()
Derived in derived.py as:
prove_heath_brown_energy_estimate()

Proof

We first suppose that \(\sigma \leq 3/4\). Here we apply Corollary 12.4 with \(\tau _0 = 2\). The \(\mathrm{LV}^*_\zeta \) supremum is now trivial, so it suffices to show that

\begin{equation} \label{second-claim} \rho ^* \leq \max \left( \frac{10-11\sigma }{2-\sigma }, \frac{18-19\sigma }{4-2\sigma }\right) \tau \end{equation}
3

whenever \((\sigma ,\tau ,\rho ,\rho ^*,s) \in \mathcal{E}\) with \(2 \leq \tau \leq 3\). Let \(k\) be the first integer for which \(1 \leq \tau /k \leq 3/2\), thus \(k=2,3\) and also \(\tau /(k+1) \leq 1\). By Lemma 10.12, there exist tuples

\begin{equation} \label{smak} \left(\sigma , \frac{\tau }{k}, \rho ', \frac{\rho ^*}{k}, s'\right), \left(\sigma ,\frac{\tau }{k+1}, \rho '', \frac{\rho ^*}{k + 1}, s''\right) \in \mathcal{E}. \end{equation}
4

for some \(\rho '\), \(s'\), \(\rho ''\) and \(s''\) satisfying

\[ \rho ' \le \frac{\rho }{k},\qquad s' \le \frac{s}{k},\qquad \rho '' \le \frac{\rho }{k+1},\qquad s'' \le \frac{s}{k+1}. \]

Applying Corollary 10.21 to the former tuple of 4 and using \(\rho ' \le \rho /k\), we have

\[ \frac{\rho ^*}{k} \leq \max \left(\frac{3\rho }{k} + 1-2\sigma , \frac{\rho }{k} +4-4\sigma , \frac{5\rho }{2k} + \frac{3-4\sigma }{2}\right). \]

Write \(\tau ' := \tau /k\). Applying Lemma 7.9 to the first tuple of 4 one has

\[ \rho /k \leq \tau ' + 1 - 2\sigma \]

while applying Lemma 7.9 to the second tuple of 4 (recalling that \(\tau /(k+1) \le 1\)) gives

\[ \rho /k = \frac{k+1}{k} \frac{\rho }{k+1} \leq \frac{k+1}{k} (2-2\sigma ) \le 3-3\sigma \]

and thus

\begin{equation} \label{rho-k} \rho /k \leq \min ( \tau '+1-2\sigma , 3-3\sigma ) \end{equation}
5

and

\begin{equation*} \begin{split} \rho ^*/k \leq \max (& 3 \min (\tau ’+1-2\sigma ,3-3\sigma ) + 1-2\sigma , \\ & \min (\tau ’+1-2\sigma ,3-3\sigma ) +4-4\sigma , \\ & 5\min (\tau ’+1-2\sigma ,3-3\sigma )/2 + (3-4\sigma )/2). \end{split}\end{equation*}

A tedious calculation shows that for \(1 \leq \tau ' \leq 3/2\), we have

\[ 3 \min (\tau '+1-2\sigma ,3-3\sigma ) + 1-2\sigma \leq \frac{10-11\sigma }{2-\sigma } \tau ', \]
\[ \min (\tau '+1-2\sigma ,3-3\sigma ) +4-4\sigma \leq \max \left( \frac{7-7\sigma }{2-\sigma }, 6-6\sigma \right)\tau ' \]

and

\[ 5\min (\tau '+1-2\sigma ,3-3\sigma )/2 + (3-4\sigma )/2 \leq \frac{18-19\sigma }{4-2\sigma } \tau '. \]

Since

\[ \max \left( \frac{7-7\sigma }{2-\sigma }, 6-6\sigma \right) \leq \max \left(\frac{10-11\sigma }{2-\sigma }, \frac{18-19\sigma }{4-2\sigma }\right) \]

we obtain the claim.

Now suppose that \(\sigma {\gt} 3/4\). From Theorem 11.18 and Lemma 12.2(i) we are already done when \(\sigma \geq 25/28\), so we may assume \(\sigma {\lt} 25/28\).

Here we apply Corollary 12.4 with \(\tau _0 = 4\sigma -1\). To control the \(\mathrm{LV}^*_\zeta \) term, we need to establish

\begin{equation} \label{first-claim} \rho ^* \leq \frac{12(1-\sigma )}{4\sigma -1} \tau \end{equation}
9

whenever \((\sigma ,\tau ,\rho ,\rho ^*,s) \in \mathcal{E}_\zeta \) and \(2 \leq \tau {\lt} 4\sigma -1\). We use Lemma 8.3(ii) followed by Lemma 9.7 to give

\[ \rho ^* \leq 3\rho \leq 3( 2\tau - 12 (\sigma -1/2) ) \]

so the claim reduces to verifying

\[ 3( 2\tau - 12 (\sigma -1/2) ) \leq \frac{12(1-\sigma )}{4\sigma -1} \tau . \]

This holds with equality when \(\tau = 4\sigma -1\), and the slope in \(\tau \) is higher on the left-hand side for \(\sigma {\gt}1/2\), so the claim 9 follows.

It remains to establish

\begin{equation} \label{second-claim'} \rho ^* \leq \frac{12(1-\sigma )}{4\sigma -1} \tau \end{equation}
10

whenever \((\sigma ,\tau ,\rho ,\rho ^*,s) \in \mathcal{E}\) and \(4\sigma -1 \leq \tau \leq 2(4\sigma -1)\). Let \(k\) be the first integer for which \((4\sigma -1)/2 \leq \tau /k \leq 3(4\sigma -1)/4\), thus \(k=2,3\) and also \(\tau /(k+1) \leq 4\sigma -1\). By Lemma 10.12, we have 4. From Theorem 7.12 we have

\[ \rho /k \leq \max (2-2\sigma , \tau ' + 4 - 6\sigma ) \]

and also

\[ \rho /k = \frac{k+1}{k} \frac{\rho }{k+1} \leq \frac{k+1}{k} (2-2\sigma ) \le 3-3\sigma \]

and hence

\begin{equation} \label{rhok} \rho /k \leq \min ( \max (2-2\sigma , \tau ' + 4 - 6\sigma ), \tau '+4-6\sigma , 3-3\sigma ). \end{equation}
11

Among other things, this implies that \(\rho /k \leq 1\).

From Theorem 10.20 and \(\rho ' \le \rho /k\), we have

\begin{equation} \label{rhok-star} \begin{split} \rho ^*/k \leq 1-2\sigma & + \frac{1}{2}\max \left(\frac{\rho }{k}+1, \frac{2\rho }{k}, \frac{5\rho }{4k} + \frac{\tau '}{2}\right)\\ & + \frac{1}{2}\max \left(\frac{\rho ^*}{k}+1, \frac{4\rho }{k}, \frac{3\rho ^*}{4k}+\frac{\rho }{k}+\frac{\tau '}{2}\right) \end{split} \end{equation}
12

where \(\tau ' := \tau /k\). This expression is complicated, so we divide into cases. First suppose that \(\rho /k+1 \geq 5\rho /4k + \tau '/2\). In this case the first maximum in the above expression is \(\rho /k+1\), and we simplify to

\[ \rho ^*/k \leq 3/2-2\sigma + \rho /2k + \max (\rho ^*/k+1, 4\rho /k, 3\rho ^*/4k+\rho /k+\tau '/2)/2, \]

which after solving for \(\rho ^*/k\) gives

\[ \rho ^*/k \leq \max ( \rho /2k + 4-4\sigma , 5\rho /2k + (3-4\sigma )/2, 8\rho /5k + 2\tau '/5 + (12-16\sigma )/5). \]

Inserting 11, one can verify after a tedious analysis (using the hypothesis \(3/4 \leq \sigma {\lt} 25/28\)) that

\begin{equation} \label{rhost} \rho ^*/k \leq \frac{12(1-\sigma )}{4\sigma -1} \tau ' \end{equation}
15

as required.

It remains to treat the case where \(\rho /k+1 {\gt} 5\rho /4k + \tau '/2\). Using 11 one can check that this forces

\begin{equation} \label{4s} 4\sigma -2 \leq \tau ' \leq \frac{3}{4}(4\sigma -1), \end{equation}
16

so that 11 now becomes

\begin{equation} \label{rhok-simp} \rho /k \leq 3-3\sigma . \end{equation}
17

The bound 12 becomes

\[ \rho ^*/k \leq 1-2\sigma + (5\rho /4k+\tau '/2)/2 + \max (\rho ^*/k+1, 4\rho /k, 3\rho ^*/4k+\rho /k+\tau '/2)/2 \]

which simplifies to

\[ \rho ^*/k \leq \max ( 5\rho /4k + \tau '/2 + 3-4\sigma , 21\rho /8k + \tau '/4 + 1-2\sigma , 9\rho /5k + 4\tau '/5 + (8 - 16\sigma )/5). \]

Inserting 17 and 16, one can eventually show (again using the hypothesis \(3/4 \leq \sigma {\lt} 25/28\)) that 15 holds as required.

We found the following estimates with the use of computer-aided proof discovery, which improve on Theorem 12.6 in various ranges of \(\sigma \). First, by using Theorem 10.20 in place of Corollary 10.21 in the proof of the previous theorem, it is possible to obtain an improved additive energy estimate for \(\sigma \ge 3/4\). A human-readable proof is contained in the following theorem.

Theorem 12.7

For \(3/4 \le \sigma \le 5/6\) one has

\[ \mathrm{A}^*(\sigma ) \le \max \left(\frac{18 - 19\sigma }{2(3\sigma - 1)(1-\sigma )}, \frac{4(10 - 9\sigma )}{5(4\sigma - 1)(1 - \sigma )}\right). \]

Derived in derived.py as:
prove_improved_heath_brown_energy_estimate()

Proof

Throughout assume that \(3/4 \le \sigma \le 5/6\). Choose

\[ \tau _0 = 8\sigma - 4. \]

We will show that

\begin{equation} \label{imphb-lver-ineq} \rho ^*/\tau \le \begin{cases} \dfrac {18 - 19\sigma }{2(3\sigma - 1)},& 3/4 \le \sigma {\lt} 4/5,\\ \dfrac {7(1 - \sigma )}{3\sigma - 1},& 4/5 \le \sigma \le 5/6, \end{cases} \end{equation}
18

for all \((\sigma , \tau , \rho , \rho ^*, s) \in \mathcal{E}\) for which \(\tau _0 \le \tau \le 2\tau _0\), and that

\begin{equation} \label{imphb-zlver-ineq} \rho ^*/\tau \le \max \left(\frac{45 - 46\sigma }{4(4\sigma - 1)}, \frac{4(10 - 9\sigma )}{5(4\sigma - 1)}\right), \end{equation}
21

for all \((\sigma , \tau , \rho , \rho ^*, s) \in \mathcal{E}_\zeta \) such that \(2 \le \tau \le \tau _0\). The desired result (i) then follows from Corollary 12.4 and computing the piecewise maximum of 18 and 21.

First, consider 21. Suppose that \((\sigma , \tau , \rho , \rho ^*, s)\in \mathcal{E}_\zeta \) with \(3/4 \le \sigma \le 5/6\) and \(2 \le \tau \le \tau _0\). Then, from Theorem 9.7 we have

\begin{equation} \label{hb-lv-rho-form} \rho \le 2\tau - 12(\sigma - 1/2). \end{equation}
22

Furthermore, by Theorem 7.12 and Lemma 7.8 with \(k = 2\), one has \(\rho \le 2\max (2 - 2\sigma , 4 - 6\sigma + \tau /2)\). However since \(\tau \le \tau _0 = 8\sigma - 4\), this simplifies to

\begin{equation} \label{huxley-lv-rho-form2} \rho \le 4 - 4\sigma . \end{equation}
23

Since \(\sigma \ge 3/4\), this also implies that \(\rho \le 1\). For future reference we also note that

\begin{equation} \label{zlver:tau-gradient-1} \frac{4}{5} {\lt} \max \left(\frac{45 - 46\sigma }{4(4\sigma - 1)}, \frac{4(10 - 9\sigma )}{5(4\sigma - 1)}\right) {\lt} 2,\qquad (3/4 \le \sigma \le 5/6). \end{equation}
24

By Theorem 10.20, one has

\[ \rho ^* \leq 1-2\sigma + \frac{1}{2}\max \left(\rho +1, 2\rho , \frac{5}{4}\rho +\frac{\tau }{2}\right) + \frac{1}{2}\max \left(\rho ^*+1, 4\rho , \frac{3}{4}\rho ^*+\rho +\frac{\tau }{2}\right). \]

Since \(\rho \le 1\), one has \(\rho + 1 \ge 2\rho \). Thus the middle term in the first maximum may be omitted, and we are left with two cases to consider.

Case 1: If \(\rho + 1 \ge 5\rho /4 + \tau /2\) then

\[ \rho ^* \le 1 -2\sigma + \frac{\rho + 1}{2} + \frac{1}{2}\max \left(\rho ^* + 1, 4\rho , \frac{3}{4}\rho ^*+\rho +\frac{\tau }{2}\right). \]

Solving for \(\rho ^*\) gives

\[ \rho ^* \le \max \left(4 - 4\sigma + \rho , \frac{3}{2} - 2\sigma + \frac{5}{2}\rho , \frac{2}{5}(6 - 8\sigma + \tau + 4\rho )\right). \]

Applying 23 to each term,

\begin{align*} \rho ^* & \le \max \left(8 - 8\sigma , \frac{23}{2} - 12\sigma , \frac{2}{5}(22 - 24\sigma + \tau )\right) \\ & \le \max \left(\frac{45 - 46\sigma }{4(4\sigma - 1)}\tau , \frac{4(10 - 9\sigma )}{5(4\sigma - 1)}\tau \right), \end{align*}

i.e. 21 holds. The last inequality may be verified by inspecting the growth rates with respect to \(\tau \) of each term (using 24), and checking that the desired inequality holds at \(\tau = 2\).

Case 2: If \(\rho + 1 {\lt} 5\rho /4 + \tau /2\), then

\[ \rho ^* \le 1 - 2\sigma + \frac{5}{8}\rho + \frac{\tau }{4} + \frac{1}{2}\max \left(\rho ^* + 1, 4\rho , \frac{3}{4}\rho ^*+\rho +\frac{\tau }{2}\right). \]

Solving for \(\rho \) gives

\[ \rho ^* \le \max \left(3 - 4\sigma + \frac{\tau }{2} + \frac{5}{4}\rho , 1 - 2\sigma + \frac{\tau }{4} + \frac{21}{8}\rho , \frac{8 - 16\sigma + 4\tau + 9\rho }{5}\right). \]

If \(\tau \ge 4\sigma - 1\), then apply 23 termwise to get

\begin{align*} \rho ^* & \le \max \left(8 - 9\sigma + \frac{\tau }{2}, \frac{23}{2} - \frac{25}{2} + \frac{\tau }{4}, \frac{4}{5}(11 - 13 \sigma + \tau )\right)\\ & \le \max \left(\frac{45 - 46\sigma }{4(4\sigma - 1)}\tau , \frac{4(10 - 9\sigma )}{5(4\sigma - 1)}\tau \right), \end{align*}

since the RHS is increasing faster in \(\tau \) and at \(\tau = 4\sigma - 1\) we have equality.

On the other hand if \(\tau {\lt} 4\sigma - 1\) then we apply 22 termwise to get

\begin{align*} \rho ^* & \le \max \left(\frac{21}{2} - 19\sigma + 3\tau , \frac{67 -134\sigma + 22\tau }{4}, \frac{2}{5}(31 - 62\sigma + 11\tau )\right)\\ & \le \max \left(\frac{45 - 46\sigma }{4(4\sigma - 1)}\tau , \frac{4(10 - 9\sigma )}{5(4\sigma - 1)}\tau \right), \end{align*}

by inspecting growth rates in \(\tau \) and noting that at \(\tau = 4\sigma - 1\) one has equality.

Thus we have shown that if \((\sigma , \tau , \rho , \rho ^*, s) \in \mathcal{E}_\zeta \) with \(3/4 \le \sigma \le 5/6\) and \(2 \le \tau \le 8\sigma - 4\), then

\[ \rho ^*/\tau \le \min \left(\frac{45 - 46\sigma }{4(4\sigma - 1)}, \frac{4(10 - 9\sigma )}{5(4\sigma - 1)}\right), \]

which is 21.

Now consider 18. Suppose that \(\tau _0 \le \tau \le 2\tau _0\) and \((\sigma , \tau , \rho , \rho ^*, s) \in \mathcal{E}\). Note that the interval \([\tau _0, 2\tau _0]\) is covered by intervals \(I_k := [(4\sigma - 2)k, (4\sigma - 2)(k + 1)]\) with \(k = 2, 3\). Suppose that \(\tau \in I_k\), and write

\[ \tau ' := \tau /k. \]

Then, by Theorem 7.12 and \(\tau ' \ge 4\sigma - 2\) one has

\[ \rho /k \le \max (2 - 2\sigma , 4 - 6\sigma + \tau ') = 4 - 6\sigma + \tau '. \]

Also, from Theorem 7.12 and \(\tau \le (4\sigma - 2)(k + 1)\) one has

\[ \rho /(k + 1) \le \max (2 - 2\sigma , 4 - 6\sigma + \tau /(k + 1)) \le 2 - 2\sigma \]

so that for \(k = 2,3\) one has \(\rho /k \le (2 - 2\sigma )(k + 1)/k \le 3 - 3\sigma \). In summary,

\begin{equation} \label{ze-ihb-rho-bound-k} \rho /k \le \min (3 - 3\sigma , 4 - 6\sigma + \tau '). \end{equation}
25

Next, by Lemma 10.12,

\[ (\sigma , \tau ', \rho ', \rho ^*/k, s') \in \mathcal{E} \]

for \(\tau ' := \tau /k\) and some \(\rho ' \le \rho /k\) and \(s' \le s/k\).

Applying Theorem 10.20 to this tuple, then applying \(\rho ' \le \rho /k\), one has

\begin{align*} \frac{\rho ^*}{k} \leq 1-2\sigma & + \frac{1}{2}\max \left(\frac{\rho }{k}+1, \frac{2\rho }{k}, \frac{5\rho }{4k} + \frac{\tau '}{2}\right) \\ & + \frac{1}{2}\max \left(\frac{\rho ^*}{k}+1, \frac{4\rho }{k}, \frac{3}{4}\frac{\rho ^*}{k} +\frac{\rho }{k}+\frac{\tau '}{2}\right). \end{align*}

By 25 one has \(\rho /k \le 1\) (since \(\sigma \ge 3/4\)) so there are only two cases to consider:

Case 1: \(\rho /k + 1 \ge 5\rho /(4k) + \tau '/2\) then

\[ \frac{\rho ^*}{k} \le \frac{3}{2} - 2\sigma + \frac{\rho }{2k} + \frac{1}{2}\max \left(\frac{\rho ^*}{k}+1, \frac{4\rho }{k}, \frac{3}{4}\frac{\rho ^*}{k} +\frac{\rho }{k}+\frac{\tau '}{2}\right). \]

Solving for \(\rho ^*/k\), we get

\[ \frac{\rho ^*}{k} \le \max \left(4(1 - \sigma ) + \frac{\rho }{k}, \frac{(3 - 4\sigma ) + 5\rho /k}{2}, \frac{2}{5}((6 - 8\sigma ) + \tau ' + \frac{4\rho }{k})\right). \]

If \(\tau ' \ge 3\sigma - 1\) then 25 reduces to \(\rho /k \le 3-3\sigma \). Substituting this bound gives

\[ \rho ^*/k \le \max (7 - 7\sigma , 9 - 19\sigma /2, 32(1 - \sigma )/5). \]

However the RHS is bounded by

\begin{equation} \label{ze-ihb-rho-1} \frac{18 - 19\sigma }{6\sigma - 2}\tau ' \end{equation}
26

for all \(\tau ' \ge 3\sigma - 1\) since the desired bound holds at \(\tau ' = 3\sigma - 1\) (where one has equality).

On the other hand, if \(4\sigma - 2 \le \tau ' \le 3\sigma - 1\) then 25 reduces to \(\rho /k \le 4 - 6\sigma + \tau '\). Substituting this bound gives

\begin{equation} \begin{split} \rho ^*/k & \le \max \left(8 -10\sigma + \tau ’,\frac{23 - 34\sigma + 5\tau '}{2}, \frac{2}{5}(22 - 32\sigma + 5\tau ’)\right)\\ & \le \frac{18 - 19\sigma }{6\sigma - 2}\tau ’\label{ze-ihb-rho-2} \end{split} \end{equation}
27

where the last inequality may be established by checking that it holds at both \(\tau ' = 4\sigma - 2\) and \(\tau ' = 3\sigma - 1\) (where one has equality). To summarise, by taking \(k = 2, 3\) in the 26 and 29, one has

\[ \rho ^* \le \frac{18 - 19\sigma }{6\sigma - 2}\tau ,\qquad (\tau _0 \le \tau \le 2\tau _0) \]

in this case.

Case 2: \(\rho /k + 1 {\lt} 5\rho /(4k) + \tau '/2\) then

\[ \rho ^*/k \leq 1-2\sigma + \frac{5\rho }{8k} + \frac{\tau '}{4} + \frac{1}{2}\max \left(\frac{\rho ^*}{k}+1, \frac{4\rho }{k}, \frac{3}{4}\frac{\rho ^*}{k} + \frac{\rho }{k}+\frac{\tau '}{2}\right). \]

Solving for \(\rho ^*/k\) gives

\[ \rho ^*/k \le \max \left(3 - 4\sigma + \frac{\tau '}{2} + \frac{5}{4}\frac{\rho }{k}, 1 - 2\sigma + \frac{\tau '}{4} + \frac{21}{8}\frac{\rho }{k}, \frac{1}{5}(8 - 16\sigma + 4\tau ' + 9\frac{\rho }{k})\right). \]

Proceeding as before, if \(\tau ' \ge 3\sigma - 1\) then 25 becomes \(\rho /k \le 3 - 3\sigma \), and substituting gives

\begin{align*} \rho ^*/k \le \max \left(\frac{27-31\sigma }{4} + \frac{\tau '}{2}, \frac{71-79\sigma }{8}+\frac{\tau '}{4}, 7-\frac{43}{5}\sigma + \frac{4}{5}\tau ’\right). \end{align*}

One may verify that the RHS is bounded by

\[ \frac{18 - 19\sigma }{6\sigma - 2}\tau ' \]

(with some room to spare) by checking at the endpoint \(\tau ' = 3\sigma - 1\).

Similarly, if \(4\sigma - 2 \le \tau ' \le 3\sigma - 1\) then using \(\rho /k \le 4 - 6\sigma + \tau '\) from 25 one has

\[ \rho ^*/k \le \max \left(8 - \frac{23\sigma }{2} + \frac{7\tau '}{4}, \frac{23}{2} - \frac{71\sigma }{4} + \frac{23\tau '}{8}, \frac{44 - 70\sigma + 13\tau '}{5}\right). \]

One can check that the RHS is bounded by

\[ \frac{18 - 19\sigma }{6\sigma - 2}\tau ' \]

by checking the required inequalities hold at \(\tau ' = 4\sigma - 2\) and \(\tau ' = 3\sigma - 1\) (in each case, with some room to spare).

Combining all the cases, by taking \(k= 2,3\) we have shown that for \(3/4 \le \sigma \le 4/5\) and \(\tau _0 \le \tau \le 2\tau _0\) one has

\[ \rho ^* \le \frac{18 - 19\sigma }{6\sigma - 2}\tau \]

which is the first part of 18.

The case for \(4/5 \le \sigma \le 5/6\) may be treated similarly. Here one needs to verify that

\[ \max (7 - 7\sigma , 9 - 19\sigma /2, 32(1 - \sigma )/5) \le \frac{7(1 - \sigma )}{3\sigma - 1}\tau ', \]
\[ \max \left(\frac{27-31\sigma }{4} + \frac{\tau '}{2}, \frac{71-79\sigma }{8}+\frac{\tau '}{4}, 7-\frac{43}{5}\sigma + \frac{4}{5}\tau '\right) \le \frac{7(1 - \sigma )}{3\sigma - 1}\tau ' \]

for \(\tau ' \ge 3\sigma - 1\), and that

\[ \max \left(8 -10\sigma + \tau ',\frac{23 - 34\sigma + 5\tau '}{2}, \frac{2}{5}(22 - 32\sigma + 5\tau ')\right) \le \frac{7(1 - \sigma )}{3\sigma - 1}\tau ', \]
\[ \max \left(8 - \frac{23\sigma }{2} + \frac{7\tau '}{4}, \frac{23}{2} - \frac{71\sigma }{4} + \frac{23\tau '}{8}, \frac{44 - 70\sigma + 13\tau '}{5}\right) \le \frac{7(1 - \sigma )}{3\sigma - 1}\tau ' \]

for \(4\sigma - 2 \le \tau ' \le 3\sigma - 1\). The treatment is analogous to before, so we omit the proof.

Using Theorem 10.27, it is possible to obtain improved energy estimates near \(\sigma = 3/4\), which are given by the next two theorems.

Theorem 12.8

For \(7/10 \le \sigma \le 3/4\), one has

\[ \mathrm{A}^*(\sigma ) \le \max \left(\frac{5(18 - 19\sigma )}{2(5\sigma + 3)(1 - \sigma )}, \frac{2(45 - 44\sigma )}{(2\sigma + 15)(1 - \sigma )}\right). \]

Derived in derived.py as:
prove_zero_density_energy_2()

Proof

Throughout assume \(7/10 \le \sigma \le 3/4\) and take \(\tau _0 = 2\) in Corollary 12.4. It suffices to show that if \((\sigma , \tau , \rho , \rho ^*, s) \in \mathcal{E}\) with \(2 \le \tau \le 4\), then either

\begin{equation} \rho ^* \le \frac{5(18 - 19\sigma )}{2(5\sigma + 3)}\tau \end{equation}
30

or

\begin{equation} \rho ^* \le \frac{2(45 - 44\sigma )}{2\sigma + 15}\tau . \end{equation}
31

Note for future reference the crude bounds

\begin{equation} \label{ze-bound2-tau-factor-bounds} 1 {\lt} \frac{5(18 - 19\sigma )}{2(5\sigma + 3)} {\lt} 2,\qquad 1 {\lt} \frac{2(45 - 44\sigma )}{2\sigma + 15} {\lt} \frac{7}{4}. \end{equation}
32

Let

\[ k := \begin{cases} 2,& 2 \le \tau {\lt} 3,\\ 3,& 3 \le \tau \le 4, \end{cases},\qquad \tau ' := \tau /k. \]

Via Theorem 7.9 and Lemma 7.8, one has

\begin{equation} \label{ze-bound2-rho1} \rho /k \le \max (2 - 2\sigma , 1 - 2\sigma + \tau ') \end{equation}
35

and via Theorem 10.27 and Lemma 7.8, one has

\[ \rho /k\le \max (2 - 2\sigma , 18/5 - 4\sigma , 12/5 - 4\sigma + \tau '). \]

Since \(\sigma \le 4/5\), we may drop the first term, i.e.

\begin{equation} \label{ze-bound2-rho2} \rho /k \le \max (18/5 - 4\sigma , 12/5 - 4\sigma + \tau '). \end{equation}
36

Combining 35 and 36,

\begin{equation} \label{ze-bound2-rhok-bound} \rho /k \le \begin{cases} 1 - 2\sigma + \tau ’,& 1 \le \tau ’ \le 13/5 - 2\sigma ,\\ 18/5 - 4\sigma ,& 13/5 - 2\sigma \le \tau ’ \le 6/5,\\ 12/5 - 4\sigma + \tau ’,& 6/5 \le \tau ’ \le 2(\sigma - 1/5) + 2(1 - \sigma )/k,\\ (2 - 2\sigma )(k + 1)/k,& 2(\sigma - 1/5) + 2(1 - \sigma )/k \le \tau ’ \le 1 + 1/k. \end{cases} \end{equation}
37

One can verify that all intervals are proper for \(7/10 \le \sigma \le 3/4\) and \(k = 2,3\).

Since \((\sigma , \tau , \rho , \rho ^*, s) \in \mathcal{E}\), by Lemma 10.12 one has \((\sigma , \tau ', \rho ', \rho ^*/k, s') \in \mathcal{E}\) for some \(\rho ' \le \rho /k\) and \(s'\le s/k\). Applying Theorem 10.20to the first tuple followed by \(\rho ' \le \rho /k\), and noting that \(\rho /k + 1 \ge 2\rho /k\) since \(\rho /k \le 1\) by 37, one obtains

\begin{equation} \label{ze-bound2-rhostar-boundk} \frac{\rho ^*}{k} \le 1-2\sigma + \frac{1}{2}\max \left(\frac{\rho }{k}+1, \frac{5\rho }{4k} + \frac{\tau '}{2}\right) + \frac{1}{2}\max \left(\frac{\rho ^*}{k}+1, \frac{4\rho }{k}, \frac{3\rho ^*}{4k} +\frac{\rho }{k}+\frac{\tau '}{2}\right). \end{equation}
42

First, suppose that \(\rho /k + 1 {\lt} 5\rho /(4k) + \tau '/2\) so that

\[ \frac{\rho ^*}{k} \leq 1-2\sigma + \frac{5\rho }{8k} + \frac{\tau '}{4} + \frac{1}{2}\max \left(\frac{\rho ^*}{k}+1, \frac{4\rho }{k}, \frac{3}{4}\frac{\rho ^*}{k} + \frac{\rho }{k}+\frac{\tau '}{2}\right). \]

Solving for \(\rho ^*/k\) gives

\[ \frac{\rho ^*}{k} \le \max \left(3 - 4\sigma + \frac{\tau '}{2} + \frac{5}{4}\frac{\rho }{k}, 1 - 2\sigma + \frac{\tau '}{4} + \frac{21}{8}\frac{\rho }{k}, \frac{1}{5}(8 - 16\sigma + 4\tau ' + 9\frac{\rho }{k})\right). \]

One may verify that the RHS is bounded by

\[ \frac{5(18 - 19\sigma )}{2(5\sigma + 3)}\tau ' \]

by substituting each case of 37. This involves the tedious verification of the following four inequalities:

\begin{equation} \label{ze-bound2-rho-case1-1} \max \left(\frac{17}{4} - \frac{13}{2}\sigma + \frac{7}{4}\tau ', \frac{29}{8} - \frac{29}{4}\sigma + \frac{23}{8}\tau ', \frac{17}{5} - \frac{34}{5}\sigma + \frac{13}{5}\tau '\right) \le \frac{5(18 - 19\sigma )}{2(5\sigma + 3)}\tau ' \end{equation}
43

for \(1 \le \tau ' \le 13/5 - 2\sigma \);

\[ \max \left(\frac{15}{2} - 9\sigma + \frac{\tau '}{2}, \frac{209}{20} - \frac{25}{2}\sigma + \frac{\tau '}{4}, \frac{202}{25} - \frac{52}{5}\sigma + \frac{4}{5}\tau '\right) \le \frac{5(18 - 19\sigma )}{2(5\sigma + 3)}\tau ' \]

for \(13/5 - 2\sigma \le \tau ' \le 6/5\);

\[ \max \left(6 - 9\sigma + \frac{7}{4}\tau ', \frac{73}{10} - \frac{25}{2}\sigma + \frac{23}{8}\tau ', \frac{148}{25} - \frac{52}{5}\sigma + \frac{13}{5}\tau '\right) \le \frac{5(18 - 19\sigma )}{2(5\sigma + 3)}\tau ' \]

for \(k = 2, 3\) and \(6/5 \le \tau ' \le 2(\sigma - 1/5) + 2(1-\sigma )/k\);

\begin{equation*} \begin{split} \max (& 3 - 4\sigma + \frac{\tau '}{2} + \frac{5(2 - 2\sigma )}{4}\frac{k + 1}{k}, 1 - 2\sigma + \frac{\tau '}{4} + \frac{21(2 - 2\sigma )}{8}\frac{k + 1}{k}, \\ & \qquad \frac{1}{5}(8 - 16\sigma + 4\tau ’ + 9(2 - 2\sigma )\frac{k + 1}{k})) \le \frac{5(18 - 19\sigma )}{2(5\sigma + 3)}\tau ’ \end{split}\end{equation*}

for \(k = 2, 3\) and \(2(\sigma - 1/5) + 2(1-\sigma )/k \le \tau ' \le 1 + 1/k\). For instance, in the case of 43, the LHS is increasing faster with respect to \(\tau '\) than the RHS in view of 32, and the inequality holds at the upper limit \(\tau ' = 13/5 - 2\sigma \) (with some room to spare). The other inequalities may be verified similarly, with the exception of

\[ 6 - 9\sigma + \frac{7}{4}\tau ' \le \frac{5(18 - 19\sigma )}{2(5\sigma + 3)}\tau ' \]

which is equivalent to \(6 - 9\sigma \le 3(53 - 75\sigma )/(4(5\sigma + 3))\tau '\). For \(\sigma {\lt} 53/75\) the LHS is negative while the RHS is positive so the inequality holds. For \(\sigma \ge 53/75\) one may verify that the inequality holds at the lower limit \(\tau ' = 6/5\).

In the remainder of the proof we assume \(\rho /k + 1 \ge 5\rho /(4k) + \tau '/2\) so that 42 becomes

\[ \frac{\rho ^*}{k} \le \frac{3}{2} - 2\sigma + \frac{\rho }{2k} + \frac{1}{2}\max \left(\frac{\rho ^*}{k}+1, \frac{4\rho }{k}, \frac{3}{4}\frac{\rho ^*}{k} +\frac{\rho }{k}+\frac{\tau '}{2}\right). \]

Solving for \(\rho ^*/k\) gives

\begin{equation} \label{ze-bound2-rho-star-bound} \frac{\rho ^*}{k} \le \max \left(4 - 4\sigma + \frac{\rho }{k}, \frac{3 - 4\sigma + 5\rho /k}{2}, \frac{2}{5}(6 - 8\sigma + \tau ' + \frac{4\rho }{k})\right). \end{equation}
46

The case where \(\tau ' \ge 6/5\) is simpler so we handle it first. Applying the last two cases of 37 it suffices to verify that

\[ \max \left(\frac{32}{5} - 8\sigma + \tau ', \frac{15}{2} - 12\sigma + \frac{5}{2}\tau ', \frac{156}{25} - \frac{48}{5}\sigma + 2\tau '\right) \le \frac{5(18 - 19\sigma )}{2(5\sigma + 3)}\tau ' \]

for \(k = 2, 3\) and \(6/5 \le \tau ' \le 2(\sigma - 1/5) + 2(1 - \sigma )/k\);

\begin{align*} & \max (4 - 4\sigma + (2 - 2\sigma )\frac{k + 1}{k}, \frac{3 - 4\sigma }{2} + (5 - 5\sigma )\frac{k + 1}{k}, \\ & \qquad \qquad \frac{2}{5}(6 - 8\sigma + \tau ’ + (8 - 8\sigma )\frac{k + 1}{k})) \le \frac{5(18 - 19\sigma )}{2(5\sigma + 3)}\tau ’ \end{align*}

for \(k = 2, 3\) and \(2(\sigma - 1/5) + 2(1 - \sigma )/k \le \tau ' \le 1 + 1/k\). Note also that one has equality when \(\tau ' = 2(\sigma - 1/5) + 2(1 - \sigma )/k\) and \(k = 2\).

Lastly, consider the case where \(1 \le \tau ' \le 6/5\). Applying \(\rho /k \le \min (1 - 2\sigma + \tau ', 18/5 - 4\sigma )\) from the first two cases of 37, one obtains

\[ \frac{3 - 4\sigma + 5\rho /k}{2} \le \min \left(4 - 7\sigma + \frac{5}{2}\tau ', \frac{21}{2} - 12\sigma \right), \]
\[ \frac{2}{5}(6 - 8\sigma + \tau ' + \frac{4\rho }{k}) \le \min \left(4 - \frac{32}{5}\sigma + 2\tau ', \frac{204}{25} - \frac{48}{5}\sigma + \frac{2}{5}\tau '\right). \]

However one may verify that the RHS of both of the above inequalities are bounded by \(5(18 - 19\sigma )/(2(5\sigma + 3))\tau '\) for \(1 \le \tau ' \le 6/5\) by checking at \(\tau ' = 13/5 - 2\sigma \). Thus

\begin{equation} \label{ze-bound2-rhok-temp1} \frac{\rho ^*}{k} \le \max \left(\frac{5(18 - 19\sigma )}{2(5\sigma + 3)}\tau ', 4 - 4\sigma + \frac{\rho }{k}\right). \end{equation}
47

Meanwhile, by Lemma 10.12,

\[ (\sigma , \tau /(k-1), \rho '', \rho ^*/(k-1), s'')\in \mathcal{E} \]

for some \(\rho ''\le \rho /(k-1)\) and \(s''\le s/(k-1)\). Applying Theorem 10.20 to this tuple (and applying \(\rho ''\le \rho /(k-1)\)) gives

\begin{equation} \label{ze-bound2-rhostar-k1} \begin{split} \frac{\rho ^*}{k - 1} \le 1-2\sigma & + \frac{1}{2}\max (\frac{\rho }{k - 1}+1, \frac{2\rho }{k -1 }, \frac{5\rho }{4(k - 1)} + \frac{\tau }{2(k - 1)}) \\ & + \frac{1}{2}\max (\frac{\rho ^*}{k - 1}+1, \frac{4\rho }{k - 1}, \frac{3\rho ^*}{4(k - 1)} +\frac{\rho }{k - 1}+\frac{\tau }{2(k-1)}). \end{split} \end{equation}
48

By expanding the first maximum and simplifying, one of the following inequalities must hold:

\begin{equation} \label{ze-bound2-rhostar-k1-case1} \rho ^* \le (\frac{3}{2} - 2\sigma )(k - 1) + \frac{\rho }{2} + \frac{1}{2}\max (\rho ^* + k - 1, 4\rho , \frac{3\rho ^*}{4} + \rho + \frac{\tau }{2}), \end{equation}
51

\begin{equation} \label{ze-bound2-rhostar-k1-case2} \rho ^* \le (1 - 2\sigma )(k - 1) + \rho + \frac{1}{2}\max (\rho ^* + k - 1, 4\rho , \frac{3\rho ^*}{4} + \rho + \frac{\tau }{2}), \end{equation}
52

\begin{equation} \label{ze-bound2-rhostar-k1-case3} \rho ^* \le (1 - 2\sigma )(k - 1) + \frac{5}{8}\rho + \frac{\tau }{4} + \frac{1}{2}\max (\rho ^* + k - 1, 4\rho , \frac{3\rho ^*}{4} + \rho + \frac{\tau }{2}). \end{equation}
53

If 51 holds, then solving for \(\rho ^*/k\) gives

\[ \rho ^*/k \le \max ((4 - 4\sigma )\frac{k - 1}{k} + \frac{\rho }{k}, \frac{(3 - 4\sigma )(k - 1)/k + 5\rho /k}{2}, \frac{2}{5}((6 - 8\sigma )\frac{k - 1}{k} + \tau ' + \frac{4\rho }{k})). \]

For \(\tau ' \le 13/5 - 2\sigma \), we apply \(\rho /k \le 1 - 2\sigma + \tau '\) from 37 (along with the inequalities \(4 - 4\sigma \ge 0\), \(3 - 4\sigma \ge 0\), \(6 - 8\sigma \ge 0\) and \((k - 1)/k \le 2/3\)),

\[ \frac{\rho ^*}{k} \le \max \left(\frac{11}{3} - \frac{14}{3}\sigma + \tau ', \frac{7}{2} - \frac{19}{3}\sigma + \frac{5}{2}\tau ', \frac{16}{5} - \frac{16}{3}\sigma + 2\tau '\right) {\lt} \frac{5(18 - 19\sigma )}{2(5\sigma + 3)}\tau ' \]

for all \(1 \le \tau ' \le 13/5 - 2\sigma \). The last inequality is verified using 32 and checking at both \(\tau ' = 1\) and \(\tau ' = 13/5-2\sigma \). Similarly, for \(13/5 - 2\sigma \le \tau ' \le 6/5\) we use \(\rho /k \le 18/5-4\sigma \) and verify that

\[ \frac{\rho ^*}{k} \le \max \left(\frac{94}{15} - \frac{20}{3}\sigma , 10 - \frac{34}{3}\sigma , \frac{184}{25} - \frac{128}{15}\sigma + \frac{2}{5}\tau '\right) {\lt} \frac{5(18 - 19\sigma )}{2(5\sigma + 3)}\tau ' \]

where the last inequality is verified using 32 and checking at the lower limit \(\tau ' = 13/5 - 2\sigma \).

Suppose now that 52 holds. Solving for \(\rho ^*/k\) gives

\[ \frac{\rho ^*}{k} \le \max \left((3 - 4\sigma )\frac{k - 1}{k} + 2\frac{\rho }{k}, (1 - 2\sigma )\frac{k - 1}{k} + 3\frac{\rho }{k}, \frac{2}{5}((4 - 8\sigma )\frac{k - 1}{k} + \tau ' + 6\frac{\rho }{k})\right) \]

Similarly to before, applying the first two cases of 37 allows one to verify that for \(1 \le \tau ' \le 6/5\),

\[ (3 - 4\sigma )\frac{k - 1}{k} + 2\frac{\rho }{k} \le \frac{2}{3}(3 - 4\sigma ) + 2\min (1 - 2\sigma + \tau ', 18/5 - 4\sigma ) \le \frac{5(18-19\sigma )}{2(5\sigma +3)}\tau ' \]

and

\[ \frac{2}{5}((4 - 8\sigma )\frac{k - 1}{k} + \tau ' + 6\frac{\rho }{k}) \le \frac{2}{5}(\frac{1}{2}(4 - 8\sigma ) + \tau ' + 6\min (1 - 2\sigma + \tau ', 18/5 - 4\sigma )) \le \frac{5(18-19\sigma )}{2(5\sigma +3)}\tau ', \]

each with room to spare. Therefore, for \(1 \le \tau ' \le 6/5\), one has

\begin{equation} \label{ze-bound2-rhok-temp2} \frac{\rho ^*}{k} \le \max \left(\frac{5(18 - 19\sigma )}{2(5\sigma + 3)}\tau ', (1 - 2\sigma )\frac{k - 1}{k} + \frac{3\rho }{k}\right) \end{equation}
54

However, if \(\tau ' \le \sigma + 1/2 - (2\sigma - 1)/(2k)\) we may apply \(\rho /k \le 1 - 2\sigma + \tau '\) to get

\[ (1 - 2\sigma )\frac{k - 1}{k} + \frac{3\rho }{k} \le (1 - 2\sigma )\frac{k - 1}{k} + 3(1 - 2\sigma + \tau ') \le \max \left(\frac{5(18 - 19\sigma )}{2(5\sigma + 3)}, \frac{2(45 - 44\sigma )}{2\sigma + 15}\right)\tau ', \]

where by 32, the last inequality is verified by checking that it holds at the upper limit \(\tau ' = \sigma + 1/2 - (2\sigma - 1)/(2k)\) for \(k = 2,3\). For \(\tau ' {\gt} \sigma + 1/2 - (2\sigma - 1)/(2k)\), we once again apply \(\rho /k \le 1 - 2\sigma + \tau '\) to get

\[ 4 - 4\sigma + \frac{\rho }{k} \le 5 - 6\sigma + \tau ' \le \max \left(\frac{5(18 - 19\sigma )}{2(5\sigma + 3)}, \frac{2(45 - 44\sigma )}{2\sigma + 15}\right)\tau ', \]

where now the last inequality is verified at the lower limit \(\tau ' = \sigma + 1/2 - (2\sigma - 1)/(2k)\). Therefore, in view of 47 and 54, one has

\[ \frac{\rho ^*}{k} \le \max \left(\frac{5(18 - 19\sigma )}{2(5\sigma + 3)}, \frac{2(45 - 44\sigma )}{2\sigma + 15}\right)\tau ' \]

in this case, as required.

Lastly, suppose that 53 holds. Then solving for \(\rho ^*/k\) gives

\[ \frac{\rho ^*}{k} \le \max ((3 - 4\sigma )\frac{k - 1}{k} + \frac{\tau '}{2} + \frac{5}{4}\frac{\rho }{k}, (1 - 2\sigma )\frac{k - 1}{k} + \frac{\tau '}{4} + \frac{21}{8}\frac{\rho }{k}, \frac{(8 - 16\sigma )(k - 1)/k + 4\tau ' + 9\rho /k}{5}). \]

Proceeding as before, we use \(\rho /k \le 1 - 2\sigma + \tau '\) from 37 together with \((k - 1)/k \le 2/3\) to get

\[ (3 - 4\sigma )\frac{k - 1}{k} + \frac{\tau '}{2} + \frac{5}{4}\frac{\rho }{k} \le \frac{13}{4} - \frac{31}{6}\sigma + \frac{7}{4}\tau ' \le \frac{2(45 - 44\sigma )}{2\sigma + 15}\tau ', \]

where the last inequality is verified at \(\tau ' = 6/5\). Furthermore, using \(\rho /k \le \min (1 -2\sigma +\tau ', 18/5-4\sigma )\) and \((k - 1)/k \ge 1/2\) one has

\begin{align*} \frac{(8 - 16\sigma )(k - 1)/k + 4\tau ' + 9\rho /k}{5} & \le \min \left(\frac{13}{5} - \frac{26}{5}\sigma + \frac{13}{5}\tau ’, \frac{182}{25} - \frac{44}{5}\sigma + \frac{4}{5}\tau ’\right)\\ & \le \max \left(\frac{5(18-19\sigma )}{2(5\sigma +3)}, \frac{2(45 - 44\sigma )}{2\sigma + 15}\right)\tau ’ \end{align*}

for \(1 \le \tau ' \le 6/5\). Therefore,

\[ \frac{\rho ^*}{k} \le \max \left(\frac{5(18-19\sigma )}{2(5\sigma +3)}\tau ', \frac{2(45 - 44\sigma )}{2\sigma + 15}\tau ', (1 - 2\sigma )\frac{k - 1}{k} + \frac{\tau '}{4} + \frac{21}{8}\frac{\rho }{k}\right). \]

If \(1 \le \tau ' \le 1 + 2\sigma /15\), we use the bound \(\rho /k \le 1 - 2\sigma + \tau '\) to get

\[ (1 - 2\sigma )\frac{k - 1}{k} + \frac{\tau '}{4} + \frac{21}{8}\frac{\rho }{k} \le (1 - 2\sigma )\frac{k - 1}{k} + \frac{\tau '}{4} + \frac{21}{8}(1 - 2\sigma +\tau ') \le \frac{2(45 - 44\sigma )}{2\sigma + 15}\tau ' \]

where by 32 it suffices to check the inequality at the upper limit \(\tau ' = 1 + 2\sigma /15\) (where we have equality if \(k = 2\)). On the other hand if \(1 + 2\sigma /15 \le \tau ' \le 6/5\), we use \(\rho /k \le 1 - 2\sigma + \tau '\) to get

\[ 4 - 4\sigma + \frac{\rho }{k} \le 5 - 6\sigma + \tau '\le \frac{2(45 - 44\sigma )}{2\sigma + 15}\tau ' \]

where by 32 it suffices to check the last inequality at \(\tau ' = 1 + 2\sigma /15\) (where we have equality). Therefore, one has

\[ \frac{\rho ^*}{k} \le \max \left(\frac{5(18 - 19\sigma )}{2(5\sigma + 3)}, \frac{2(45 - 44\sigma )}{2\sigma + 15}\right)\tau ' \]

in this case too.

Theorem 12.9

For \(3/4 \le \sigma \le 4/5\), one has

\[ \mathrm{A}^*(\sigma ) \le \max \left(\frac{197 - 220\sigma }{8(5\sigma - 1)(1 - \sigma )}, \frac{3(29 - 30\sigma )}{5(5\sigma - 1)(1 - \sigma )}, \frac{4(10 - 9\sigma )}{5(4\sigma - 1)(1 - \sigma )}\right) \]

Derived in derived.py as:
prove_zero_density_energy_3()

Proof

Throughout assume that \(3/4 \le \sigma \le 4/5\) and take \(\tau _0 := 8\sigma - 4\) in Corollary 12.4. It suffices to show that

\begin{equation} \label{ze-bound3-energy-req} \rho ^* \le \max \left(\frac{197 - 220\sigma }{8(5\sigma - 1)}, \frac{3(29 - 30\sigma )}{5(5\sigma - 1)}\right)\tau \end{equation}
55

for all \((\sigma , \tau , \rho , \rho ^*, s) \in \mathcal{E}\) satisfying \(\tau _0 \le \tau \le 2\tau _0\), and

\begin{equation} \label{ze-bound3-energyzeta-req} \rho ^* \le \frac{4(10 - 9\sigma )}{5(4\sigma - 1)}\tau \end{equation}
56

for all \((\sigma , \tau , \rho , \rho ^*, s) \in \mathcal{E}_\zeta \) such that \(2 \le \tau \le \tau _0\). In the proof of Theorem 12.7 we have already shown that 56 holds in the large range \(65/86 \le \sigma \le 5/6\), so it remains to prove 55. Given \(\sigma , \tau \), let \(k \ge 2\) be the integer for which

\begin{equation} \label{ze-bound3-kdefn} k \le \frac{\tau }{4\sigma - 2} {\lt} k + 1 \end{equation}
57

so that \(k = 2, 3\) for \(\tau _0 \le \tau {\lt} 2\tau _0\), and as before write \(\tau ' := \tau /k\).

By Theorem 10.27 and Lemma 7.8 one has

\[ \rho /k \le \max (18/5 - 4\sigma , 12/5 - 4\sigma + \tau ') = \begin{cases} 18/5 - 4\sigma ,& \tau ’ \le 6/5\\ 12/5 - 4\sigma + \tau ’,& \tau ’ {\gt} 6/5 \end{cases} \]

and from Theorem 7.12 and Lemma 7.8, for any integer \(\ell \),

\[ \rho /\ell \le \max (2 -2\sigma , 4 - 6\sigma + \tau /\ell ) = \begin{cases} 2 - 2\sigma ,& \tau /\ell \le 4\sigma - 2,\\ 4 - 6\sigma + \tau /\ell ,& \tau /\ell {\gt} 4\sigma - 2. \end{cases} \]

so that in particular, taking \(\ell = k + 1\) and noting that \(\tau /(k + 1) \le 4\sigma - 2\) by 57,

\[ \rho /k = \frac{k + 1}{k}\frac{\rho }{k + 1} \le \frac{k + 1}{k}\max (2 - 2\sigma , 4 - 6\sigma + \frac{\tau }{k + 1}) = (2 - 2\sigma )\frac{k + 1}{k} \le 3 - 3\sigma . \]

Combining everything, one obtains (for \(k \ge 2\))

\begin{equation} \label{ze-bound3-rhok} \rho /k \le \begin{cases} 4 - 6\sigma + \tau ’,& 4\sigma - 2 \le \tau ’ \le 2\sigma - 2/5,\\ 18/5 - 4\sigma ,& 2\sigma - 2/5 \le \tau ’ \le 6/5,\\ 12/5 - 4\sigma + \tau ’, & 6/5 \le \tau ’ \le \sigma + 3/5,\\ 3 - 3\sigma ,& \sigma + 3/5 \le \tau ’ \le (4\sigma - 2)(k + 1)/k. \end{cases} \end{equation}
62

First, suppose that \(6/5 \le \tau ' \le (4\sigma - 2)(k + 1)/k\). By Lemma 10.12, \((\sigma , \tau ', \rho ', \rho ^*/k, s') \in \mathcal{E}\) for some \(\rho ' \le \rho /k\) and \(s' \le s/k\). Applying Theorem 10.20, and noting that \(\rho /k + 1 \ge 2\rho /k\) since \(\rho /k \le 1\) by 62,

\[ \frac{\rho ^*}{k} \le 1-2\sigma + \frac{1}{2}\max \left(\frac{\rho }{k}+1, \frac{5\rho }{4k} + \frac{\tau '}{2}\right) + \frac{1}{2}\max \left(\frac{\rho ^*}{k}+1, \frac{4\rho }{k}, \frac{3\rho ^*}{4k} +\frac{\rho }{k}+\frac{\tau '}{2}\right). \]

If \(\rho /k + 1 \ge 5\rho /(4k) + \tau '/2\), then

\[ \frac{\rho ^*}{k} \le \frac{3}{2} - 2\sigma + \frac{\rho }{2k} + \frac{1}{2}\max \left(\frac{\rho ^*}{k}+1, \frac{4\rho }{k}, \frac{3\rho ^*}{4k} +\frac{\rho }{k}+\frac{\tau '}{2}\right). \]

Solving for \(\rho ^*/k\) gives

\[ \frac{\rho ^*}{k} \le \max \left(4 - 4\sigma + \frac{\rho }{k}, \frac{3 - 4\sigma + 5\rho /k}{2}, \frac{2}{5}(6 - 8\sigma + \tau ' + \frac{4\rho }{k})\right). \]

Applying \(\rho /k \le \min (12/5 - 4\sigma + \tau ', 3 - 3\sigma )\) to the RHS, one may ultimately verify that

\[ \frac{\rho ^*}{k} \le \max \left(\frac{197 - 220\sigma }{8(5\sigma - 1)}, \frac{3(29 - 30\sigma )}{5(5\sigma - 1)}\right)\tau '. \]

If \(\rho /k + 1 \le 5\rho /(4k) + \tau '/2\) one has

\[ \rho ^*/k \leq 1-2\sigma + \frac{5\rho }{8k} + \frac{\tau '}{4} + \frac{1}{2}\max (\frac{\rho ^*}{k}+1, \frac{4\rho }{k}, \frac{3}{4}\frac{\rho ^*}{k} + \frac{\rho }{k}+\frac{\tau '}{2}) \]

and solving for \(\rho ^*/k\) gives

\[ \rho ^*/k \le \max (3 - 4\sigma + \frac{\tau '}{2} + \frac{5}{4}\frac{\rho }{k}, 1 - 2\sigma + \frac{\tau '}{4} + \frac{21}{8}\frac{\rho }{k}, \frac{1}{5}(8 - 16\sigma + 4\tau ' + 9\frac{\rho }{k})). \]

Once again applying \(\rho /k \le \min (12/5 - 4\sigma + \tau ', 3 - 3\sigma )\), one again ultimately obtains

\[ \rho ^*/k \le \frac{197 - 220\sigma }{8(5\sigma - 1)}\tau '. \]

Now suppose that \(4\sigma - 2 \le \tau ' \le 6/5\). By Lemma 10.12, for any integer \(k \ge 2\) one has \((\sigma , \tau /(k - 1), \rho ', \rho ^*/(k - 1), s') \in \mathcal{E}\) for some \(\rho ' \le \rho /(k - 1)\) and \(s' \le s/(k - 1)\). Applying Theorem 10.20 to this tuple, followed by \(\rho ' \le \rho /(k - 1)\) and rearranging, one obtains

\begin{equation} \label{ze-bound3-rhostar2} \begin{split} \rho ^* \le (1-2\sigma )(k - 1) & + \frac{1}{2}\max (\rho +k - 1, 2\rho , \frac{5\rho }{4} + \frac{\tau }{2}) \\ & + \frac{1}{2}\max (\rho ^*+k - 1, 4\rho , \frac{3\rho ^*}{4} + \rho +\frac{\tau }{2}). \end{split} \end{equation}
67

Consider the first maximum of 67. If \(\rho + k - 1\) is maximal, then

\[ \rho ^* \le (\frac{3}{2} - 2\sigma )(k - 1) + \frac{\rho }{2} + \frac{1}{2}\max (\rho ^*+k - 1, 4\rho , \frac{3\rho ^*}{4} + \rho +\frac{\tau }{2}). \]

Solving for \(\rho ^*\) and dividing by \(k\) gives

\[ \frac{\rho ^*}{k} \le \max ((4 - 4\sigma )\frac{k - 1}{k} + \frac{\rho }{k}, \frac{(3 - 4\sigma )(k - 1)/k + 5\rho /k}{2}, \frac{2}{5}((6 - 8\sigma )(k - 1)/k + \tau ' + \frac{4\rho }{k})). \]

Since \(3/4 \le \sigma \le 1\) and \(1/2 \le (k - 1)/k \le 2/3\), we have

\[ \frac{\rho ^*}{k} \le \max \left(\frac{8}{3}(1 - \sigma ) + \frac{\rho }{k}, \frac{3}{4} - \sigma + \frac{5}{2}\frac{\rho }{k}, \frac{2}{5}(3 - 4\sigma + \tau ' + \frac{4\rho }{k})\right). \]

Bounding the RHS with \(\rho /k \le \min (4 - 6\sigma + \tau ', 18/5 - 4\sigma )\), one ultimately obtains

\[ \rho ^*/k \le \max \left(\frac{197 - 220\sigma }{8(5\sigma - 1)}, \frac{3(29 - 30\sigma )}{5(5\sigma - 1)}\right)\tau '. \]

Now suppose \(5\rho /4 + \tau '/2\) is maximal in 67. Then

\[ \rho ^* \le (1 - 2\sigma )(k - 1) + \frac{5}{8}\rho + \frac{\tau }{4} + \frac{1}{2}\max (\rho ^*+k - 1, 4\rho , \frac{3\rho ^*}{4} + \rho +\frac{\tau }{2}). \]

Solving for \(\rho ^*\) and dividing by \(k\) gives

\[ \frac{\rho ^*}{k} \le \max ((3 - 4\sigma )\frac{k - 1}{k} + \frac{\tau '}{2} + \frac{5}{4}\frac{\rho }{k}, (1 - 2\sigma )\frac{k - 1}{k} + \frac{\tau '}{4} + \frac{21}{8}\frac{\rho }{k}, \frac{8}{5}((1 - 2\sigma )\frac{k - 1}{k} + \frac{\tau '}{2} + \frac{9}{8}\frac{\rho }{k})). \]

As before, since \(3/4 \le \sigma \le 1\) and \(1/2 \le (k - 1)/k \le 2/3\), one has

\[ \frac{\rho ^*}{k} \le \max (\frac{3 - 4\sigma }{2} + \frac{\tau '}{2} + \frac{5}{4}\frac{\rho }{k}, \frac{1}{2} - \sigma + \frac{\tau '}{4} + \frac{21}{8}\frac{\rho }{k}, \frac{8}{5}(\frac{1}{2} - \sigma + \frac{\tau '}{2} + \frac{9}{8}\frac{\rho }{k})). \]

Once again we apply \(\rho /k \le \min (4 - 6\sigma + \tau ', 18/5 - 4\sigma )\) to ultimately obtain

\[ \rho ^*/k \le \max \left(\frac{197 - 220\sigma }{8(5\sigma - 1)}, \frac{3(29 - 30\sigma )}{5(5\sigma - 1)}\right)\tau '. \]

Lastly, if \(2\rho \) is maximal in 67, then

\[ \rho ^* \le (1 - 2\sigma )(k - 1) + \rho + \frac{1}{2}\max (\rho ^*+k - 1, 4\rho , \frac{3\rho ^*}{4} + \rho +\frac{\tau }{2}). \]

Solving for \(\rho ^*\) and dividing by \(k\) gives

\[ \rho ^*/k \le \max ((3 - 4\sigma )\frac{k - 1}{k} + \frac{2\rho }{k}, (1 - 2\sigma )\frac{k - 1}{k} + \frac{3\rho }{k}, \frac{8}{5}((1 - 2\sigma )\frac{k - 1}{k} + \frac{\tau '}{4} + \frac{3}{2}\frac{\rho }{k})). \]

Once again we apply \(\rho /k \le \min (4 - 6\sigma + \tau ', 18/5 - 4\sigma )\) to ultimately obtain

\[ \rho ^*/k \le \max \left(\frac{197 - 220\sigma }{8(5\sigma - 1)}, \frac{3(29 - 30\sigma )}{5(5\sigma - 1)}\right)\tau ' \]

in this case too.

Modest improvements are possible by incorporating more large value estimates; these are recorded in the next few theorems.

Theorem 12.10

For \(664/877 \le \sigma \le 31/40\), one has

\[ \mathrm{A}^*(\sigma )\le \max \left(\frac{72 - 91\sigma }{7(11\sigma - 8)(1 - \sigma )}, \frac{5(18 - 19\sigma )}{2(5\sigma + 3)(1 - \sigma )}\right). \]

Derived in derived.py as:
prove_zero_density_energy_4()

Proof

Fix \(664/877 \le \sigma \le 31/40\) and take \(\tau _0 = 2\). It suffices to show that

\[ \rho ^* \le \max \left(\frac{72 - 91\sigma }{7(11\sigma - 8)}, \frac{5(18 - 19\sigma )}{2(5\sigma + 3)}\right)\tau \]

for all \((\sigma , \tau , \rho , \rho ^*, s) \in \mathcal{E}\) satisfying \(2 \le \tau \le 4\).

Let \(k = 2\) if \(2 \le \tau {\lt} 3\) and \(k = 3\) otherwise, and as usual let \(\tau ' = \tau /k\). By Lemma 10.12, \((\sigma , \tau ', \rho ', \rho ^*/k, s') \in \mathcal{E}\) for some \(\rho ' \le \rho /k\) and \(s' \le s/k\). Applying Theorem 10.20, and noting that \(\rho /k + 1 \ge 2\rho /k\) since \(\rho /k \le 1\) by 62,

\[ \frac{\rho ^*}{k} \le 1-2\sigma + \frac{1}{2}\max (\frac{\rho }{k}+1, \frac{5\rho }{4k} + \frac{\tau '}{2}) + \frac{1}{2}\max (\frac{\rho ^*}{k}+1, \frac{4\rho }{k}, \frac{3\rho ^*}{4k} +\frac{\rho }{k}+\frac{\tau '}{2}). \]

Rearranging the inequality and solving for \(\rho ^*/k\), one must either have

\begin{equation} \label{ze-bound5-rhostar1} \frac{\rho ^*}{k} \le \max (4 - 4\sigma + \frac{\rho }{k}, \frac{3 - 4\sigma + 5\rho /k}{2}, \frac{2}{5}(6 - 8\sigma + \tau ' + \frac{4\rho }{k})). \end{equation}
70

or

\begin{equation} \label{ze-bound5-rhostar2} \frac{\rho ^*}{k} \le \max (3 - 4\sigma + \frac{\tau '}{2} + \frac{5}{4}\frac{\rho }{k}, 1 - 2\sigma + \frac{\tau '}{4} + \frac{21}{8}\frac{\rho }{k}, \frac{1}{5}(8 - 16\sigma + 4\tau ' + 9\frac{\rho }{k})). \end{equation}
71

Here we will divide our argument into several cases. Suppose first that

\[ \tau ' \ge \frac{9\sigma - 1}{5}. \]

By Theorem 10.27, one has

\[ \rho /k \le \max (18/5 - 4\sigma , 12/5 - 4\sigma + \tau ') \]

and by Theorem 7.9, one has

\[ \rho /(k + 1) \le \max (2 - 2\sigma , 1 - 2\sigma + \tau /(k + 1)). \]

Combining the two inequalities, we have

\begin{equation} \label{ze-bound5-rho-bound} \rho /k \le \begin{cases} 18/5 - 4\sigma ,& (9\sigma - 1)/5 \le \tau ’ {\lt} 6/5,\\ 12/5 - 4\sigma + \tau ’,& 6/5 \le \tau ’ {\lt} 2\sigma - 2/5 + 2(1 - \sigma )/k,\\ (2 - 2\sigma )(k + 1)/k,& 2\sigma - 2/5 + 2(1 - \sigma )/k \le \tau ’ \le (k + 1)/k. \end{cases} \end{equation}
72

Substituting 72 into 70 and 71, one may verify that

\[ \frac{\rho ^*}{k} \le \frac{5(18 - 19\sigma )}{2(5\sigma + 3)}\tau ' \]

for all \((9\sigma - 1)/5 \le \tau ' \le 1 + 1/k\) (with equality occurring at \(\tau ' = 2\sigma - 2/5 + 2(1 - \sigma )/k\) and \(k = 2\)).

Now consider the case where

\[ 1 \le \tau ' \le \frac{9\sigma - 1}{5}. \]

Taking \(k = 10\) in Theorem 7.16, one has

\begin{equation} \label{ze-bound5-julita-lvt} \rho /k \le \max (2 - 2\sigma , 19/5 - 29\sigma /5 + \tau ', 60 - 80\sigma + \tau '). \end{equation}
76

Suppose first that \(\sigma \ge 281/371\). Then, this reduces to

\begin{equation} \label{ze-bound5-julita-lvt1} \begin{split} \rho /k & \le \max (2 - 2\sigma , 19/5 - 29\sigma /5 + \tau ’). \end{split} \end{equation}
77

By Lemma 10.12, for any integer \(k \ge 2\) one has \((\sigma , \tau /(k - 1), \rho ', \rho ^*/(k - 1), s') \in \mathcal{E}\) for some \(\rho ' \le \rho /(k - 1)\) and \(s' \le s/(k - 1)\). Applying Theorem 10.20 to this tuple, followed by \(\rho ' \le \rho /(k - 1)\) and rearranging, one obtains

\begin{equation} \label{ze-bound5-rhostar-bound} \begin{split} \rho ^* \le (1-2\sigma )(k - 1) & + \frac{1}{2}\max (\rho +k - 1, 2\rho , \frac{5\rho }{4} + \frac{\tau }{2}) \\ & + \frac{1}{2}\max (\rho ^*+k - 1, 4\rho , \frac{3\rho ^*}{4} + \rho +\frac{\tau }{2}). \end{split} \end{equation}
79

By considering each case of the two maximums individually, and solving for \(\rho ^*/k\), one obtains

\begin{equation} \label{ze-bound5-rhostar-bound3} \begin{split} \frac{\rho ^*}{k} \le \max \bigg(& (4 - 4\sigma )\frac{k - 1}{k} + \frac{\rho }{k}, \frac{(3 - 4\sigma )(k - 1)/k + 5\rho /k}{2}, \\ & \frac{2}{5}((6 - 8\sigma )\frac{k - 1}{k} + \tau ’ + \frac{4\rho }{k}), (3 - 4\sigma )\frac{k - 1}{k} + 2\frac{\rho }{k}, \\ & (1 - 2\sigma )\frac{k - 1}{k} + 3\frac{\rho }{k}, \frac{2}{5}((4 - 8\sigma )\frac{k - 1}{k} + \tau ’ + 6\frac{\rho }{k}),\\ & (3 - 4\sigma )\frac{k - 1}{k} + \frac{\tau '}{2} + \frac{5}{4}\frac{\rho }{k}, (1 - 2\sigma )\frac{k - 1}{k} + \frac{\tau '}{4} + \frac{21}{8}\frac{\rho }{k}, \\ & \frac{(8 - 16\sigma )(k - 1)/k + 4\tau ' + 9\rho /k}{5}\bigg). \end{split} \end{equation}
82

Bounding each term on the RHS using 77, one may verify that in each case

\[ \frac{\rho ^*}{k} {\lt} \frac{5(18 - 19\sigma )}{2(5\sigma + 3)}\tau ' \]

for \(1 \le \tau ' \le (9\sigma - 1)/5\) and \(k = 2,3\).

Suppose now that \(\sigma {\lt} 281/371\) so that 76 reduces to

\begin{equation} \label{ze-bound5-julita-lvt-2} \frac{\rho }{k} \le \max (2 - 2\sigma , 60 - 80\sigma + \tau '). \end{equation}
88

If \(1 \le \tau ' {\lt} 77\sigma /2 - 28\) then substituting \(\rho /k \le \max (2 - 2\sigma , 60 - 80\sigma + \tau ')\) into 82, one may ultimately verify in each case that

\[ \frac{\rho ^*}{k} \le \max \left(\frac{72 - 91\sigma }{7(11\sigma - 8)}, \frac{5(18 - 19\sigma )}{2(5\sigma + 3)}\right)\tau ' \]

for \(k = 2,3\), with equality when \(\tau ' = 77\sigma /2 - 28\) and \(k = 2\) (here we make use of the assumption \(\sigma \ge 664/877 = 0.7571\ldots \)).

Lastly, if \(77\sigma /2 - 28 \le \tau ' \le (9\sigma - 1)/5\) then 88 simplifies to \(\rho /k \le 60-80\sigma +\tau '\). Substituting this into 70 and 71, one obtains in either case that

\[ \frac{\rho ^*}{k} \le \max \left(\frac{72 - 91\sigma }{7(11\sigma - 8)}, \frac{5(18 - 19\sigma )}{2(5\sigma + 3)}\right)\tau ' \]

with equality when \(\tau ' = 77\sigma /2 - 28\) and \(k = 2\).

Theorem 12.11

For \(42/55 \le \sigma \le 79/103\), one has

\[ \mathrm{A}^*(\sigma ) \le \max \left(\frac{18 - 19\sigma }{6(15\sigma - 11)(1- \sigma )}, \frac{3(18-19\sigma )}{4(4\sigma -1)(1 - \sigma )}\right). \]

Derived in derived.py as:
prove_zero_density_energy_5()

Proof

Fix \(42/55 \le \sigma \le 79/103\) and take \(\tau _0 = 2\). It suffices to show that

\[ \rho ^* \le \max \left(\frac{18 - 19\sigma }{6(15\sigma - 11)}, \frac{3(18-19\sigma )}{4(4\sigma -1)}\right)\tau \]

for all \((\sigma , \tau , \rho , \rho ^*, s) \in \mathcal{E}\) for which \(2 \le \tau \le 4\). As before let

\[ k := \begin{cases} 2,& 2 \le \tau {\lt} 3,\\ 3,& 3 \le \tau \le 4, \end{cases}\qquad \tau ' := \tau /k, \]

so that in particular \(1 \le \tau ' \le (k + 1)/k\).

By Lemma 10.12, for \(k = 2, 3\),

\begin{equation} \label{ze-bound6-tuples} (\sigma , \tau ', \rho ', \rho ^*/k, s'),\quad (\sigma , \tau /(k + 1), \rho '', \rho ^*/(k + 1), s'') \in \mathcal{E}\end{equation}
91

for some \(\rho ' \le \rho /k\), \(s' \le s/k\), \(\rho '' \le \rho /(k + 1)\) and \(s'' \le s/(k + 1)\). Applying Theorem 7.16 with \(k = 6\) to each tuple, one has

\begin{equation} \label{ze-bound6-rho-bound} \begin{split} \rho /k & \le \max (2 - 2\sigma , 11/3 - 17\sigma /3 + \tau ’, 36 - 48\sigma + \tau ’),\\ \rho /(k + 1) & \le \max (2 - 2\sigma , 11/3 - 17\sigma /3 + \tau /(k + 1), 36 - 48\sigma + \tau /(k + 1)). \end{split} \end{equation}
92

First suppose \(\sigma \ge 97/127\), in which case the above simplifies to

\begin{align*} \rho /k & \le \max (2 - 2\sigma , 11/3 - 17\sigma /3 + \tau ’),\\ \rho /(k + 1) & \le \max (2 - 2\sigma , 11/3 - 17\sigma /3 + \tau /(k + 1)). \end{align*}

This combines to give

\begin{equation} \label{ze-bound6-rho} \rho /k \le \begin{cases} 2 - 2\sigma ,& 1 \le \tau ’ {\lt} (11\sigma - 5)/3,\\ 11/3 - 17\sigma /3 + \tau ’,& (11\sigma - 5)/3 \le \tau ’ {\lt} (11\sigma - 5)/3 + 2(1 - \sigma )/k,\\ (2 - 2\sigma )(k + 1)/k,& (11\sigma - 5)/3 + 2(1 - \sigma )/k \le \tau ’ \le 1 + 1/k. \end{cases} \end{equation}
95

First suppose that \(\tau ' \ge (11\sigma - 5)/3\). Applying Theorem 10.20 to the first tuple of 91, and noting that \(\rho /k + 1 \ge 2\rho /k\) since \(\rho /k \le 1\),

\[ \frac{\rho ^*}{k} \le 1-2\sigma + \frac{1}{2}\max (\frac{\rho }{k}+1, \frac{5\rho }{4k} + \frac{\tau '}{2}) + \frac{1}{2}\max (\frac{\rho ^*}{k}+1, \frac{4\rho }{k}, \frac{3\rho ^*}{4k} +\frac{\rho }{k}+\frac{\tau '}{2}). \]

Rearranging the inequality and solving for \(\rho ^*/k\), one must either have

\begin{equation} \label{ze-bound6-rhostar-bound-case01} \frac{\rho ^*}{k} \le \max (4 - 4\sigma + \frac{\rho }{k}, \frac{3 - 4\sigma + 5\rho /k}{2}, \frac{2}{5}(6 - 8\sigma + \tau ' + \frac{4\rho }{k})) \end{equation}
99

or

\begin{equation} \label{ze-bound6-rhostar-bound-case02} \frac{\rho ^*}{k} \le \max (3 - 4\sigma + \frac{\tau '}{2} + \frac{5}{4}\frac{\rho }{k}, 1 - 2\sigma + \frac{\tau '}{4} + \frac{21}{8}\frac{\rho }{k}, \frac{1}{5}(8 - 16\sigma + 4\tau ' + 9\frac{\rho }{k})). \end{equation}
100

In either case, upon substituting the last two cases of 95 one obtains

\begin{equation} \label{ze-bound6-rhostar-bound-case1} \rho ^*/k \le \frac{3(18-19\sigma )}{4(4\sigma -1)}\tau ',\qquad (\frac{11\sigma - 5}{3} \le \tau '\le 1 + \frac{1}{k}). \end{equation}
101

Now suppose that \(\tau ' {\lt} (11\sigma - 5)/3\). Then, note that for \(k = 2, 3\) one has

\[ (\sigma , \tau /(k-1), \rho ''', \rho ^*/(k-1), s''') \in \mathcal{E} \]

for some \(\rho ''' \le \rho /(k-1)\) and \(s''' \le s/(k-1)\). Applying Theorem 10.20 to this tuple, followed by \(\rho ''' \le \rho /(k - 1)\) and rearranging, one obtains

\begin{equation} \label{ze-bound6-rhostar-bound} \begin{split} \rho ^* \le (1-2\sigma )(k - 1) & + \frac{1}{2}\max (\rho +k - 1, 2\rho , \frac{5\rho }{4} + \frac{\tau }{2}) \\ & + \frac{1}{2}\max (\rho ^*+k - 1, 4\rho , \frac{3\rho ^*}{4} + \rho +\frac{\tau }{2}). \end{split} \end{equation}
102

By considering each case of the two maximums individually, and solving for \(\rho ^*/k\), one obtains

\begin{equation} \label{ze-bound6-rhostar-bound3} \begin{split} \frac{\rho ^*}{k} \le \max \bigg(& (4 - 4\sigma )\frac{k - 1}{k} + \frac{\rho }{k}, \frac{(3 - 4\sigma )(k - 1)/k + 5\rho /k}{2}, \\ & \frac{2}{5}((6 - 8\sigma )\frac{k - 1}{k} + \tau ’ + \frac{4\rho }{k}), (3 - 4\sigma )\frac{k - 1}{k} + 2\frac{\rho }{k}, \\ & (1 - 2\sigma )\frac{k - 1}{k} + 3\frac{\rho }{k}, \frac{2}{5}((4 - 8\sigma )\frac{k - 1}{k} + \tau ’ + 6\frac{\rho }{k}),\\ & (3 - 4\sigma )\frac{k - 1}{k} + \frac{\tau '}{2} + \frac{5}{4}\frac{\rho }{k}, (1 - 2\sigma )\frac{k - 1}{k} + \frac{\tau '}{4} + \frac{21}{8}\frac{\rho }{k}, \\ & \frac{(8 - 16\sigma )(k - 1)/k + 4\tau ' + 9\rho /k}{5}\bigg). \end{split} \end{equation}
105

Note that for all \(1 \le \tau ' {\lt} (11\sigma - 5)/3\), one has by 95 that \(\rho /k \le 2 - 2\sigma \). Substituting this into 105, one obtains

\[ \rho ^*/k \le \frac{3(18-19\sigma )}{4(4\sigma -1)}\tau ' \]

in this case too. Combined with 101, we have shown that

\[ \rho ^* \le \frac{3(18-19\sigma )}{4(4\sigma -1)}\tau \]

for all \((\sigma , \tau , \rho , \rho ^*, s) \in \mathcal{E}\) for \(97/127 \le \sigma \le 79/103\) and \(2 \le \tau \le 4\), as required.

The proof in the range \(42/55 \le \sigma \le 97/127\) is similar. Here 92 reduces to

\begin{align*} \rho /k & \le \max (2 - 2\sigma , 36 - 48\sigma + \tau ’),\\ \rho /(k + 1) & \le \max (2 - 2\sigma , 36 - 48\sigma + \tau /(k + 1)) \end{align*}

so that

\begin{equation} \label{ze-bound6-rho-case2} \rho /k \le \begin{cases} 2 - 2\sigma ,& 1 \le \tau ’ {\lt} 46\sigma - 34,\\ 36 - 48\sigma + \tau ’,& 46\sigma - 34 \le \tau ’ {\lt} 46\sigma - 34 + 2(1 - \sigma )/k,\\ (2 - 2\sigma )(k + 1)/k,& 46\sigma - 34 + 2(1 - \sigma )/k \le \tau ’ \le 1 + 1/k. \end{cases} \end{equation}
111

If \(\tau ' \ge 46\sigma - 34\), we substitute the last two cases of this bound into 99 and 100, one may verify that

\begin{equation} \label{ze-bound6-rho-final} \frac{\rho ^*}{k} \le \frac{18 - 19\sigma }{6(15\sigma - 11)}\tau ' \end{equation}
115

with equality when \(\tau ' = 46\sigma - 34 + 2(1 - \sigma )/k\) and \(k = 2\).

On the other hand if \(1 \le \tau ' {\lt} 46\sigma - 34\) then substituting \(\rho /k \le 2 - 2\sigma \) into 105 gives

\[ \frac{\rho ^*}{k} \le \frac{18 - 19\sigma }{6(15\sigma - 11)}\tau ',\qquad (1 \le \tau ' \le 46\sigma - 34) \]

in each case. Combined with 115, the desired result follows for \(42/55 \le \sigma \le 97/127\).

Theorem 12.12

For \(79/103 \le \sigma \le 84/109\), one has

\[ \mathrm{A}^*(\sigma ) \le \max \left(\frac{18 - 19\sigma }{2(37\sigma - 27)(1 - \sigma )}, \frac{5(18 - 19\sigma )}{2(13\sigma - 3)(1 - \sigma )}\right). \]

Derived in derived.py as:
prove_zero_density_energy_6()

Proof

Fix \(79/103 \le \sigma \le 84/109\) and take

\[ \tau _0 = \begin{cases} (36\sigma - 16)/5,& 79/103 \le \sigma {\lt} 33/43,\\ 38\sigma - 28,& 33/43 \le \sigma \le 84/109. \end{cases} \]

Let

\[ k := \begin{cases} 2,& \tau _0 \le \tau {\lt} 3\tau _0/2\\ 3,& 3\tau _0/2 \le \tau \le 2\tau _0 \end{cases},\qquad \tau ' := \tau /k. \]

Suppose that \((\sigma , \tau , \rho , \rho ^*, s) \in \mathcal{E}\). We will first show

\begin{equation} \label{ze-bound7-rhostar-bound} \rho ^* \le \max \left(\frac{18 - 19\sigma }{2(37\sigma - 27)}, \frac{5(18 - 19\sigma )}{2(13\sigma - 3)}\right)\tau ,\qquad (\tau _0 \le \tau \le 2\tau _0). \end{equation}
120

By Lemma 10.12, one has that

\begin{equation} \label{ze-bound7-tuples} (\sigma , \tau ', \rho ', \rho ^*/k, s'),\quad (\sigma , \tau /(k + 1), \rho '', \rho ^*/(k + 1), s'') \in \mathcal{E}\end{equation}
121

for some \(\rho ' \le \rho /k\), \(s' \le s/k\), \(\rho '' \le \rho /(k + 1)\) and \(s'' \le s/(k + 1)\). First suppose that \(\sigma \ge 33/43\). In this range, Theorem 7.16 with \(k = 5\) gives

\[ \rho /k \le \max (2 - 2\sigma , 18/5 - 28\sigma /5 + \tau '), \]
\[ \rho /(k + 1) \le \max (2 - 2\sigma , 18/5 - 28\sigma /5 + \tau /(k + 1)). \]

For \(\tau \ge \tau _0\), the first inequality reduces to \(\rho /k \le 18/5 - 28\sigma /5 + \tau '\), while for \(\tau \le 2\tau _0\) the second inequality reduces to

\[ \rho /k = \frac{k + 1}{k}\frac{\rho }{k + 1} \le \frac{k + 1}{k}(2 - 2\sigma ) \le 3 - 3\sigma . \]

Combining these two inequalities gives

\[ \rho /k \le \min \left(18/5 - 28\sigma /5 + \tau ', 3 - 3\sigma \right),\qquad (\tau _0 \le \tau \le 2\tau _0). \]

In particular this implies \(\rho /k \le 1\). Applying Theorem 10.20 to the first tuple of 121,

\[ \frac{\rho ^*}{k} \le 1-2\sigma + \frac{1}{2}\max (\frac{\rho }{k}+1, \frac{5\rho }{4k} + \frac{\tau '}{2}) + \frac{1}{2}\max (\frac{\rho ^*}{k}+1, \frac{4\rho }{k}, \frac{3\rho ^*}{4k} +\frac{\rho }{k}+\frac{\tau '}{2}). \]

By considering each case of the first maximum and solving for \(\rho ^*/k\), one must either have

\begin{equation} \label{ze-bound7-rhostar-bound-case01} \frac{\rho ^*}{k} \le \max (4 - 4\sigma + \frac{\rho }{k}, \frac{3 - 4\sigma + 5\rho /k}{2}, \frac{2}{5}(6 - 8\sigma + \tau ' + \frac{4\rho }{k})) \end{equation}
122

or

\begin{equation} \label{ze-bound7-rhostar-bound-case02} \frac{\rho ^*}{k} \le \max (3 - 4\sigma + \frac{\tau '}{2} + \frac{5}{4}\frac{\rho }{k}, 1 - 2\sigma + \frac{\tau '}{4} + \frac{21}{8}\frac{\rho }{k}, \frac{1}{5}(8 - 16\sigma + 4\tau ' + 9\frac{\rho }{k})). \end{equation}
123

However one may verify in both cases that

\begin{equation} \label{ze-bound7-rhostar-final1} \frac{\rho ^*}{k} \le \frac{5(18 - 19\sigma )}{2(13\sigma - 3)}\tau ' \end{equation}
124

for \(33/43\le \sigma \le 84/109\) and \(\tau _0 \le \tau \le 2\tau _0\) (with equality at \(\tau = 2(13\sigma - 3)/5\)).

Now consider \(\sigma \le 33/43\). In this range of \(\sigma \), Theorem 7.16 with \(k = 5\) gives

\[ \rho /k \le \max (2 - 2\sigma , 30 - 40\sigma + \tau '), \]
\[ \rho /(k + 1) \le \max (2 - 2\sigma , 30 - 40\sigma + \tau /(k + 1)) \]

which gives

\[ \rho /k \le \min (30 - 40\sigma + \tau ', 3 - 3\sigma ),\qquad (\tau _0 \le \tau \le 2\tau _0). \]

Substituting this bound into 122 and 123, one obtains

\[ \frac{\rho ^*}{k} \le \frac{18 - 19\sigma }{2(37\sigma - 27)}\tau ' \]

for \(79/103 \le \sigma \le 33/43\) and \(\tau _0 \le \tau \le 2\tau _0\) (with equality at \(\tau = 74\sigma - 54\)). Combined with 124, one obtains 120.

It remains to show that

\begin{equation} \label{ze-bound7-rhostar-zeta-bound} \rho ^* \le \max \left(\frac{18 - 19\sigma }{2(37\sigma - 27)}, \frac{5(18 - 19\sigma )}{2(13\sigma - 3)}\right)\tau \end{equation}
125

for all \((\sigma , \tau , \rho , \rho ^*, s) \in \mathcal{E}_\zeta \) for which \(79/103 \le \sigma \le 84/109\) and \(2 \le \tau \le \tau _0\). This follows from substituting \(\rho /k \le 6 - 12\sigma + 2\tau '\) (Theorem 9.7) into 122 and 123.

Theorem 12.13
#

For \(84/109 \le \sigma \le 5/6\), one has

\[ \mathrm{A}^*(\sigma ) \le \max \left(\frac{18 - 19\sigma }{9(3\sigma - 2)(1 - \sigma )}, \frac{4(10 - 9\sigma )}{5(4\sigma - 1)(1 - \sigma )}\right). \]

Derived in derived.py as:
prove_zero_density_energy_7()

Theorem 12.14
#

For \(165/226 \le \sigma \le 42/55\) one has

\[ \mathrm{A}^*(\sigma ) \le \max \left(\frac{457 - 546\sigma }{2(61 - 58\sigma )(1 - \sigma )}, \frac{5(18 - 19\sigma )}{2(5\sigma + 3)(1 - \sigma )}\right). \]

Derived in derived.py as:
prove_zero_density_energy_12()

Table 12.1 records the sharpest known unconditional upper bounds on \(\mathrm{A}^*(\sigma )\) for \(1/2 \le \sigma \le 1\) (except when close to \(\sigma = 1\), when sharper estimates are available by applying Lemma 12.2 with known zero-density bounds).

Table 12.1 Current best upper bound on \(\mathrm{A}^*(\sigma )\)

\(\mathrm{A}^*(\sigma )\) bound

Range

Reference

\(\dfrac {10 - 11\sigma }{(2 - \sigma )(1 - \sigma )}\)

\(\dfrac {1}{2} \leq \sigma \le \dfrac {2}{3} = 0.6666\ldots \)

Theorem 12.6

\(\dfrac {18 - 19\sigma }{(4 - 2\sigma )(1 - \sigma )}\)

\(\dfrac {2}{3} \leq \sigma \le \dfrac {7}{10} = 0.7\)

Theorem 12.6

\(\dfrac {5(18 - 19\sigma )}{2(5\sigma + 3)(1 - \sigma )}\)

\(\dfrac {7}{10} \leq \sigma \le \dfrac {539 - \sqrt{42121}}{460} = 0.7255\ldots \)

Theorem 12.8

\(\dfrac {2(45 - 44\sigma )}{(2\sigma + 15)(1 - \sigma )}\)

\(\dfrac {539 - \sqrt{42121}}{460} \leq \sigma \le \dfrac {165}{226} = 0.7300\ldots \)

Theorem 12.8

\(\dfrac {457 - 546\sigma }{2(61 - 58\sigma )(1-\sigma )}\)

\(\dfrac {165}{226} \leq \sigma \le \dfrac {5831 + \sqrt{60001}}{8240} = 0.7373\ldots \)

Theorem 12.14

\(\dfrac {5(18 - 19\sigma )}{2(5\sigma + 3)(1 - \sigma )}\)

\(\dfrac {5831 + \sqrt{60001}}{8240} \leq \sigma \le \dfrac {42}{55} = 0.7636\ldots \)

Theorem 12.14, 12.10

\(\dfrac {18 - 19\sigma }{6(15\sigma - 11)(1- \sigma )}\)

\(\dfrac {42}{55} \leq \sigma \le \dfrac {97}{127} = 0.7637\ldots \)

Theorem 12.11

\(\dfrac {3(18-19\sigma )}{4(4\sigma -1)(1 - \sigma )}\)

\(\dfrac {97}{127} \leq \sigma \le \dfrac {79}{103} = 0.7669\ldots \)

Theorem 12.11

\(\dfrac {18 - 19\sigma }{2(37\sigma - 27)(1 - \sigma )}\)

\(\dfrac {79}{103} \leq \sigma \le \dfrac {33}{43} = 0.7674\ldots \)

Theorem 12.12

\(\dfrac {5(18 - 19\sigma )}{2(13\sigma - 3)(1 - \sigma )}\)

\(\dfrac {33}{43} \leq \sigma \le \dfrac {84}{109} = 0.7706\ldots \)

Theorem 12.12

\(\dfrac {18 - 19\sigma }{9(3\sigma - 2)(1 - \sigma )}\)

\(\dfrac {84}{109} \leq \sigma \le \dfrac {1273 - \sqrt{128689}}{1184} = 0.7721\ldots \)

Theorem 12.13

\(\dfrac {4(10 - 9\sigma )}{5(4\sigma - 1)(1 - \sigma )}\)

\(\dfrac {1273 - \sqrt{128689}}{1184} \leq \sigma \le \dfrac {5}{6} = 0.8333\ldots \)

Theorem 12.7, 12.9, 12.13

\(\dfrac {12}{4\sigma - 1}\)

\(\dfrac {5}{6} \leq \sigma \le 1\)

Theorem 12.6

\includegraphics[width=0.5\textwidth ]{chapter/zero_density_energy_estimate.png}
Figure 12.1 Comparison of bounds on \(\mathrm{A}^*(\sigma )\) under various assumptions.