Bibliography
- 1
F. V. Atkinson. A DIVISOR PROBLEM. The Quarterly Journal of Mathematics, os-12(1):193–200, 1941.
- 2
R. J. Backlund. über die Nullstellen der Riemannschen Zetafunktion. Acta Math., 41(1):345–375, 1916.
- 3
R. C. Baker. The Brun-Titchmarsh theorem. J. Number Theory, 56(2):343–365, 1996.
- 4
R. C. Baker and G. Harman. The Brun-Titchmarsh theorem on average. In Analytic number theory, Vol. 1 (Allerton Park, IL, 1995), volume 138 of Progr. Math., pages 39–103. Birkhäuser Boston, Boston, MA, 1996.
- 5
R. C. Baker and G. Harman. The difference between consecutive primes. Proc. London Math. Soc. (3), 72(2):261–280, 1996.
- 6
R. C. Baker, G. Harman, and J. Pintz. The exceptional set for Goldbach’s problem in short intervals. In Sieve methods, exponential sums, and their applications in number theory (Cardiff, 1995), volume 237 of London Math. Soc. Lecture Note Ser., pages 1–54. Cambridge Univ. Press, Cambridge, 1997.
- 7
R. C. Baker, G. Harman, and J. Pintz. The difference between consecutive primes. II. Proc. London Math. Soc. (3), 83(3):532–562, 2001.
- 8
S. Baluyot. On the zeros of Riemann’s zeta-function. PhD thesis, University of Rochester, 2017.
- 9
Chiara Bellotti. Explicit zero density estimate near unity, 2023.
- 10
Chiara Bellotti. An explicit log-free zero density estimate for the riemann zeta-function, 2024.
- 11
Chiara Bellotti and Andrew Yang. On the generalised Dirichlet divisor problem. Bulletin of the London Mathematical Society, 56(5):1859–1878, May 2024.
- 12
M. Bennett. Fractional parts of powers of rational numbers. Mathematical Proceedings of the Cambridge Philosophical Society, 114(2):191–201, 1993.
- 13
E. Bombieri and H. Iwaniec. On the order of
. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Ser. 4, 13(3):449–472, 1986.- 14
Enrico Bombieri. Le grand crible dans la théorie analytique des nombres, volume No. 18 of Astérisque. Société Mathématique de France, Paris, 1974. Avec une sommaire en anglais.
- 15
J. Bourgain. Remarks on Montgomery’s conjectures on Dirichlet sums. In Geometric aspects of functional analysis (1989–90), volume 1469 of Lecture Notes in Math., pages 153–165. Springer, Berlin, 1991.
- 16
J. Bourgain. On the distribution of Dirichlet sums. II. In Number theory for the millennium, I (Urbana, IL, 2000), pages 87–109. A K Peters, Natick, MA, 2002.
- 17
J. Bourgain. Decoupling, exponential sums and the Riemann zeta function. Journal of the American Mathematical Society, 30(1):205–224, January 2017.
- 18
J. Bourgain and M. Z. Garaev. Kloosterman sums in residue rings. Acta Arith., 164(1):43–64, 2014.
- 19
Jean Bourgain. Remarks on Halasz-Montgomery Type Inequalities. In J. Lindenstrauss and V. Milman, editors, Geometric Aspects of Functional Analysis, pages 25–39. Birkhäuser Basel, Basel, 1995.
- 20
Jean Bourgain. On large values estimates for dirichlet polynomials and the density hypothesis for the riemann zeta function. International Mathematics Research Notices, 2000(3):133–146, 2000.
- 21
Jean Bourgain, Ciprian Demeter, and Larry Guth. Proof of the main conjecture in Vinogradov’s mean value theorem for degrees higher than three. Ann. of Math. (2), 184(2):633–682, 2016.
- 22
Joerg Bruedern and Trevor D. Wooley. On waring’s problem for larger powers, 2022.
- 23
D. A. Burgess. On character sums and
-series. Proc. London Math. Soc. (3), 12:193–206, 1962.- 24
D. A. Burgess. On character sums and
-series. II. Proc. London Math. Soc. (3), 13:524–536, 1963.- 25
F. Carlson. Über die nullstellen der dirichletschen reihen und der riemannschen
-funktion. Ark. Mat. Astron. Fys., 15(20):28, 1921.- 26
Bin Chen, Gregory Debruyne, and Jasson Vindas. On the density hypothesis for
-functions associated with holomorphic cusp forms. Revista Matemática Iberoamericana, April 2024. Published online first.- 27
Jing-run Chen. On the divisor problem for
. Sci. Sinica, 14:19–29, 1965.- 28
Jing Run Chen. On the least prime in an arithmetical progression and two theorems concerning the zeros of Dirichlet’s
-functions. Sci. Sinica, 20(5):529–562, 1977.- 29
Jing Run Chen. On the least prime in an arithmetical progression and theorems concerning the zeros of Dirichlet’s
-functions. II. Sci. Sinica, 22(8):859–889, 1979.- 30
Jing Run Chen and Jian Min Liu. On the least prime in an arithmetical progression. III. Sci. China Ser. A, 32(6):654–673, 1989.
- 31
Tsung-tao Chih. A divisor problem. Acad. Sinica Sci. Record, 3:177–182, 1950.
- 32
Laura Cladek and Terence Tao. Additive energy of regular measures in one and higher dimensions, and the fractal uncertainty principle. Ars Inven. Anal., pages Paper No. 1, 38, 2021.
- 33
J. B. Conrey. At least two fifths of the zeros of the Riemann zeta function are on the critical line. Bulletin (New Series) of the American Mathematical Society, 20(1):79–81, 1989.
- 34
R. J. Cook. On the occurrence of large gaps between prime numbers. Glasgow Math. J., 20(1):43–48, 1979.
- 35
J. G. v. d. Corput. Verschärfung der Abschätzung beim Teilerproblem. Mathematische Annalen, 87(1-2):39–65, March 1922.
- 36
J. G. v. d. Corput. Zum Teilerproblem. Mathematische Annalen, 98(1):697–716, March 1928.
- 37
H. Cramér. über das Teilerproblem von Piltz. Arkiv för Mat. Astr. och. Fysik, 16(21), 1922.
- 38
H. Cramér. On the order of magnitude of the difference between consecutive prime numbers. Acta Arith., 2:23–46, 1936.
- 39
G. Csordas, T. S. Norfolk, and R. S. Varga. A lower bound for the de Bruijn-Newman constant
. Numer. Math., 52(5):483–497, 1988.- 40
G. Csordas, A. M. Odlyzko, W. Smith, and R. S. Varga. A new Lehmer pair of zeros and a new lower bound for the de Bruijn-Newman constant
. Electron. Trans. Numer. Anal., 1:104–111 (electronic only), 1993.- 41
G. Csordas, A. Ruttan, and R. S. Varga. The Laguerre inequalities with applications to a problem associated with the Riemann hypothesis. Numerical Algorithms, 1(2):305–329, June 1991.
- 42
George Csordas, Wayne Smith, and Richard S. Varga. Lehmer pairs of zeros, the de Bruijn-Newman constant
, and the Riemann hypothesis. Constr. Approx., 10(1):107–129, 1994.- 43
H. Davenport. On waring’s problem for fourth powers. Annals of Mathematics, 40(4):731–747, 1939.
- 44
H. Davenport. On waring’s problem for cubes. Acta Mathematica, 71(0):123–143, 1939.
- 45
N. G. de Bruijn. The roots of trigonometric integrals. Duke Math. J., 17:197–226, 1950.
- 46
Ciprian Demeter, Larry Guth, and Hong Wang. Small cap decouplings. Geometric and Functional Analysis, 30(4):989–1062, 08 2020.
- 47
Alexander Dobner. A proof of Newman’s conjecture for the extended Selberg class. Acta Arith., 201(1):29–62, 2021.
- 48
A K Dubitskas. A lower bound for the quantity ||(3/2)k||. Russian Mathematical Surveys, 45:163 – 164, 1990.
- 49
Johann Duttlinger and Wolfgang Schwarz. über die Verteilung der pythagoräischen Dreiecke. Colloq. Math., 43(2):365–372, 1980.
- 50
Jesse Elliott. Analytic number theory and algebraic asymptotic analysis. 2024.
- 51
P Erdös. On the arithmetical density of the sum of two sequences one of which forms a basis for the integers. Acta Arithmetica, 1(2):197–200, 1935.
- 52
E. Fogels. On the zeros of
-functions. Acta Arith., 11:67–96, 1965.- 53
K. Ford. Vinogradov’s integral and bounds for the Riemann zeta function. Proc. London Math. Soc. (3), 85(3):565–633, 2002.
- 54
M. Forti and C. Viola. On large sieve type estimates for the Dirichlet series operator. In Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), volume Vol. XXIV of Proc. Sympos. Pure Math., pages 31–49. Amer. Math. Soc., Providence, RI, 1973.
- 55
John Friedlander and Henryk Iwaniec. The Brun-Titchmarsh theorem. In Analytic number theory (Kyoto, 1996), volume 247 of London Math. Soc. Lecture Note Ser., pages 85–93. Cambridge Univ. Press, Cambridge, 1997.
- 56
P. X. Gallagher. A large sieve density estimate near
. Invent. Math., 11:329–339, 1970.- 57
Dorian M. Goldfeld. A further improvement of the Brun-Titchmarsh theorem. J. London Math. Soc. (2), 11(4):434–444, 1975.
- 58
S. Graham. An asymptotic estimate related to Selberg’s sieve. J. Number Theory, 10(1):83–94, 1978.
- 59
S. Graham. On Linnik’s constant. Acta Arith., 39(2):163–179, 1981.
- 60
Sidney West Graham. APPLICATIONS OF SIEVE METHODS. ProQuest LLC, Ann Arbor, MI, 1977. Thesis (Ph.D.)–University of Michigan.
- 61
Larry Guth and James Maynard. New large value estimates for dirichlet polynomials, 2024.
- 62
G. Halász. On the average of multiplicative number-theoretic functions. Acta Math. Hungar., 19:365–404, 1968.
- 63
G. Halász and P. Turán. On the distribution of roots of Riemann zeta and allied functions, I. Journal of Number Theory, 1(1):121–137, January 1969.
- 64
W. Haneke. Verschärfung der abschätzung von
. Acta Arithmetica, 8(4):357–430, 1963.- 65
G. H. Hardy. On Dirichlet’s Divisor Problem. Proc. London Math. Soc. (2), 15:1–25, 1916.
- 66
G. H. Hardy. The Average Order of the Arithmetical Functions
and . Proceedings of the London Mathematical Society, s2-15(1):192–213, 1917.- 67
G. H. Hardy and J. E. Littlewood. Contributions to the theory of the riemann zeta-function and the theory of the distribution of primes. Acta Mathematica, 41(0):119–196, 1916.
- 68
G. H. Hardy and J. E. Littlewood. The Approximate Functional Equation in the Theory of the Zeta-Function, with Applications to the Divisor-Problems of Dirichlet and Piltz. Proceedings of the London Mathematical Society, s2-21(1):39–74, 1923.
- 69
G. H. Hardy and J. E. Littlewood. On lindelöf’s hypothesis concerning the riemann zeta-function. Proc. R. Soc. A, pages 403–412, 1923.
- 70
G. H. Hardy and J. E. Littlewood. Some problems of ?partitio numerorum? (vi): Further researches in waring’s problem. Mathematische Zeitschrift, 23(1):1–37, December 1925.
- 71
G. Harman. Prime-detecting sieves, volume 33 of London Mathematical Society Monographs Series. Princeton University Press, Princeton, NJ, 2007.
- 72
Glyn Harman. Primes in short intervals. Math. Z., 180(3):335–348, 1982.
- 73
Glyn Harman. On the distribution of
modulo one. J. London Math. Soc. (2), 27(1):9–18, 1983.- 74
D. R. Heath-Brown. The differences between consecutive primes. J. London Math. Soc. (2), 18(1):7–13, 1978.
- 75
D. R. Heath-Brown. The twelfth power moment of the riemann-function. The Quarterly Journal of Mathematics, 29(4):443–462, 1978.
- 76
D. R. Heath-Brown. The differences between consecutive primes. II. J. London Math. Soc. (2), 19(2):207–220, 1979.
- 77
D. R. Heath-Brown. The differences between consecutive primes. III. J. London Math. Soc. (2), 20(2):177–178, 1979.
- 78
D. R. Heath-Brown. A Large Values Estimate for Dirichlet Polynomials. Journal of the London Mathematical Society, s2-20(1):8–18, August 1979.
- 79
D. R. Heath-Brown. Zero Density Estimates for the Riemann Zeta-Function and Dirichlet L -Functions. Journal of the London Mathematical Society, s2-19(2):221–232, April 1979.
- 80
D. R. Heath-Brown. Mean values of the zeta-function and divisor problems. In Recent Progress in Analytic Number Theory, volume 1, pages 115–119, Durham 1979, 1981. Academic, London.
- 81
D. R. Heath-Brown. Finding primes by sieve methods. In Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983), pages 487–492. PWN, Warsaw, 1984.
- 82
D. R. Heath-Brown. Zero-free regions for Dirichlet
-functions, and the least prime in an arithmetic progression. Proc. London Math. Soc. (3), 64(2):265–338, 1992.- 83
D. R. Heath-Brown. A new
th derivative estimate for exponential sums via Vinogradov’s mean value. Proceedings of the Steklov Institute of Mathematics, 296(1):88–103, January 2017.- 84
D. R. Heath-Brown and H. Iwaniec. On the difference between consecutive primes. Invent. Math., 55(1):49–69, 1979.
- 85
Roger Heath-Brown. The Differences Between Consecutive Primes, V. International Mathematics Research Notices, 2021(22):17514–17562, November 2021.
- 86
Hans Heilbronn. über den Primzahlsatz von Herrn Hoheisel. Math. Z., 36(1):394–423, 1933.
- 87
Harald Andres Helfgott. The ternary goldbach problem, 2015.
- 88
G. Hoheisel. Primzahlprobleme in der analysis. Siz. Preuss. Akad. Wiss., 33:580–588, 1930.
- 89
M. N. Huxley. On the difference between consecutive primes. Invent. Math., 15:164–170, 1972.
- 90
M. N. Huxley. A note on large gaps between prime numbers. Acta Arith., 38(1):63–68, 1980/81.
- 91
M. N. Huxley. Exponential Sums and the Riemann Zeta Function IV. Proceedings of the London Mathematical Society, s3-66(1):1–40, January 1993.
- 92
M. N. Huxley. Area, Lattice Points, and Exponential Sums. Number New Ser., 13 in Oxford Science Publications. Clarendon Press; Oxford University Press, Oxford; New York, 1996.
- 93
M. N. Huxley. Exponential Sums and Lattice Points III. Proceedings of the London Mathematical Society, 87(03):591–609, November 2003.
- 94
M. N. Huxley. Exponential sums and the Riemann zeta function v. Proceedings of the London Mathematical Society, 90(01):1–41, January 2005.
- 95
M. N. Huxley and G. Kolesnik. Exponential Sums and the Riemann Zeta Function III. Proceedings of the London Mathematical Society, s3-62(3):449–468, May 1991.
- 96
M. N. Huxley and G. Kolesnik. Exponential Sums and the Riemann Zeta Function III. Proceedings of the London Mathematical Society, s3-66(2):302–302, March 1993.
- 97
M. N. Huxley and N. Watt. Exponential Sums and the Riemann Zeta Function. Proceedings of the London Mathematical Society, s3-57(1):1–24, July 1988.
- 98
M. N. Huxley and N. Watt. The Hardy-Littlewood method for exponential sums. In Number theory, Vol. I (Budapest, 1987), volume 51 of Colloq. Math. Soc. János Bolyai, pages 173–191. North-Holland, Amsterdam, 1990.
- 99
Martin Huxley. Large values of Dirichlet polynomials. Acta Arithmetica, 24(4):329–346, 1973.
- 100
Martin Huxley. Large values of Dirichlet polynomials II. Acta Arithmetica, 27:159–170, 1975.
- 101
Martin Huxley. Large values of Dirichlet polynomials, III. Acta Arithmetica, 26(4):435–444, 1975.
- 102
Martin N. Huxley and Grigori Kolesnik. Exponential sums with a large second derivative. In Matti Jutila and Tauno Metsänkylä, editors, Number Theory, pages 131–144. De Gruyter, Berlin, Boston, January 2001.
- 103
A. E. Ingham. On the difference between consecutive primes. The Quarterly Journal of Mathematics, os-8(1):255–266, 1937.
- 104
A. E. Ingham. On the estimation of
. The Quarterly Journal of Mathematics, os-11(1):201–202, 1940.- 105
A. E. Ingham. The distribution of prime numbers. Number no. 30 in Cambridge mathematical library. Cambridge University Press, Cambridge ; New York, 1990.
- 106
A. Ivić. Topics in Recent Zeta Function Theory. Publications mathématiques d’Orsay. Université de Paris-Sud, Département de Mathématique, 1983.
- 107
A. Ivić. A zero-density theorem for the Riemann zeta-function. Tr. Mat. Inst. Steklova, 163:85–89, 1984.
- 108
Aleksandar Ivić. On sums of large differences between consecutive primes. Math. Ann., 241(1):1–9, 1979.
- 109
Aleksandar Ivić. Exponent pairs and the zeta function of Riemann. Studia Sci. Math. Hungar., 15(1-3):157–181, 1980.
- 110
Aleksandar Ivić. The Riemann zeta-function. Dover Publications, Inc., Mineola, NY, 2003. Theory and applications, Reprint of the 1985 original [Wiley, New York; MR0792089 (87d:11062)].
- 111
Aleksandar Ivic and Michel Ouellet. Some new estimates in the dirichlet divisor problem. Acta Arithmetica, 52(3):241–253, 1989.
- 112
Aleksandar Ivić. A note on the zero-density estimates for the zeta function. Archiv der Mathematik, 33(1):155–164, December 1979.
- 113
H. Iwaniec and E. Kowalski. Analytic number theory, volume 53 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2004.
- 114
H Iwaniec and C.J Mozzochi. On the divisor and circle problems. Journal of Number Theory, 29(1):60–93, May 1988.
- 115
Henryk Iwaniec. On the Brun-Titchmarsh theorem. J. Math. Soc. Japan, 34(1):95–123, 1982.
- 116
Henryk Iwaniec and Matti Jutila. Primes in short intervals. Ark. Mat., 17(1):167–176, 1979.
- 117
Henryk Iwaniec and János Pintz. Primes in short intervals. Monatsh. Math., 98(2):115–143, 1984.
- 118
Olli Järviniemi. On large differences between consecutive primes, 2022.
- 119
Chao Hua Jia. Goldbach numbers in short interval. I. Sci. China Ser. A, 38(4):385–406, 1995.
- 120
Chao Hua Jia. On the exceptional set of Goldbach numbers in a short interval. Acta Arith., 77(3):207–287, 1996.
- 121
Chaohua Jia. Difference between consecutive primes. Sci. China Ser. A, 38(10):1163–1186, 1995.
- 122
Chaohua Jia. Almost all short intervals containing prime numbers. Acta Arith., 76(1):21–84, 1996.
- 123
Chen Jing-run. On the least prime in an arithmetical progression. Sci. Sinica, 14:1868–1871, 1965.
- 124
M. Jutila. Zeros of the zeta-function near the critical line. In Studies in pure mathematics, pages 385–394. Birkhäuser, Basel, 1983.
- 125
Matti Jutila. A new estimate for Linnik’s constant. Ann. Acad. Sci. Fenn. Ser. A I, 471:8, 1970.
- 126
Matti Jutila. On Linnik’s constant. Math. Scand., 41(1):45–62, 1977.
- 127
Matti Jutila. On Linnik’s constant. Math. Scand., 41(1):45–62, 1977.
- 128
Matti Jutila. Zero-density estimates for L-functions. Acta Arithmetica, 32(1):55–62, 1977.
- 129
Koichi Kawada and Trevor D. Wooley. On the waring–goldbach problem for fourth and fifth powers. Proceedings of the London Mathematical Society, 83(1):1–50, 2001.
- 130
Bryce Kerr. Large values of dirichlet polynomials and zero density estimates for the riemann zeta function, 2019.
- 131
Haseo Ki, Young-One Kim, and Jungseob Lee. On the de Bruijn-Newman constant. Adv. Math., 222(1):281–306, 2009.
- 132
Henry Kim and Peter Sarnak. Refined estimates towards the ramanujan and selberg conjectures. J. Amer. Math. Soc, 16(1):175–181, 2003.
- 133
G. Kolesnik. On the estimation of multiple exponential sums. In Recent progress in analytic number theory, Vol. 1 (Durham, 1979), pages 231–246. Academic Press, London-New York, 1981.
- 134
G. Kolesnik. On the order of
and . Pacific Journal of Mathematics, 98(1):107–122, 1982.- 135
G. Kolesnik. On the method of exponent pairs. Acta Arith., 45(2):115–143, 1985.
- 136
G. A. Kolesnik. The improvement of the remainder term in the divisor problem. Mat. Zametki, 6:545–554, 1969.
- 137
G. A. Kolesnik. An estimate for certain trigonometric sums. Acta Arith., 25:7–30. (errata insert), 1973/74.
- 138
Angel V. Kumchev and Trevor D. Wooley. On the waring–goldbach problem for seventh and higher powers. Monatshefte für Mathematik, 183(2):303–310, June 2016.
- 139
J. Lambek and L. Moser. On the distribution of Pythagorean triangles. Pacific J. Math., 5:73–83, 1955.
- 140
Edmund Landau. über die anzahl der gitterpunkte in geweissen bereichen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1912:687–770, 1912.
- 141
Andrew V. Lelechenko. Linear programming over exponent pairs. Acta Universitatis Sapientiae, Informatica, 5(2):271–287, 2014.
- 142
Hong Ze Li. Goldbach numbers in short intervals. Sci. China Ser. A, 38(6):641–652, 1995.
- 143
Hongze Li. Primes in short intervals. Math. Proc. Cambridge Philos. Soc., 122(2):193–205, 1997.
- 144
Runbo Li. Primes in almost all short intervals, 2024.
- 145
Runbo Li. The number of primes in short intervals and numerical calculations for harman’s sieve, 2025.
- 146
Xiaochun Li and Xuerui Yang. An improvement on gauss’s circle problem and dirichlet’s divisor problem, 2023.
- 147
Linnik. An elementary solution of the problem of waring by schnirelman’s method. Matematiceskij sbornik, 54(2):225–230, 1943.
- 148
U. V. Linnik. On the least prime in an arithmetic progression. I. The basic theorem. Rec. Math. [Mat. Sbornik] N.S., 15/57:139–178, 1944.
- 149
U. V. Linnik. On the least prime in an arithmetic progression. II. The Deuring-Heilbronn phenomenon. Rec. Math. [Mat. Sbornik] N.S., 15/57:347–368, 1944.
- 150
Yu. V. Linnik. On Erdős’s theorem on the addition of numerical sequences. Mat. Sb., Nov. Ser., 10:67–78, 1942.
- 151
Yu. V. Linnik. On the representation of large numbers as sums of seven cubes. Mat. Sb., Nov. Ser., 12:218–224, 1943.
- 152
Jianya Liu, Trevor D Wooley, and Gang Yu. The quadratic waring–goldbach problem. Journal of Number Theory, 107(2):298–321, 2004.
- 153
Shi Tuo Lou and Qi Yao. On the upper bound of difference between consecutive primes. Kexue Tongbao, 30(8):1127–1128, 1985.
- 154
Shi Tuo Lou and Qi Yao. On the Brun-Titchmarsh theorem. Ziran Zazhi, 5(393), 1986.
- 155
Shi Tuo Lou and Qi Yao. Upper bounds for primes in intervals. Chinese Ann. Math. Ser. A, 10(3):255–262, 1989.
- 156
Shi Tuo Lou and Qi Yao. A Chebychev’s type of prime number theorem in a short interval. II. Hardy-Ramanujan J., 15:1–33, 1992.
- 157
Shituo Lou and Qi Yao. The number of primes in a short interval. Hardy-Ramanujan Journal, 16:127, January 1993.
- 158
Wenhui Lu and Hengjie Yuan. Primes in a short interval, 2025.
- 159
K. Mahler. On the fractional parts of the powers of a rational number (ii). Mathematika, 4(2):122–124, 1957.
- 160
Helmut Maier. Primes in short intervals. Michigan Math. J., 32(2):221–225, 1985.
- 161
K. Matomäki. Large differences between consecutive primes. The Quarterly Journal of Mathematics, 58(4):489–518, August 2007.
- 162
Kaisa Matomäki and Joni Teräväinen. A note on zero density results implying large value estimates for dirichlet polynomials, 2024.
- 163
J. Maynard. On the difference between consecutive primes, 2012.
- 164
James Maynard. On the Brun-Titchmarsh theorem. Acta Arith., 157(3):249–296, 2013.
- 165
Zaizhao Meng. The distribution of the zeros of
-functions and the least prime in some arithmetic progression. Sci. China Ser. A, 43(9):937–944, 2000.- 166
Hartmut Menzer. On the number of primitive Pythagorean triangles. Math. Nachr., 128:129–133, 1986.
- 167
Szu-Hoa Min. On the order of
. Transactions of the American Mathematical Society, 65(3):448–472, 1949.- 168
H. L. Montgomery. Zeros of
-functions. Invent. Math., 8:346–354, 1969.- 169
H. L. Montgomery and R. C. Vaughan. The large sieve. Mathematika, 20:119–134, 1973.
- 170
Hugh L. Montgomery. Topics in multiplicative number theory, volume Vol. 227 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1971.
- 171
Yoichi Motohashi. On some improvements of the Brun-Titchmarsh theorem. II. Sūrikaisekikenkyūsho Kokyūroku, (193):97–109, 1973.
- 172
Yoichi Motohashi. On some improvements of the Brun-Titchmarsh theorem. J. Math. Soc. Japan, 26:306–323, 1974.
- 173
C. J. Mozzochi. On the difference between consecutive primes. J. Number Theory, 24(2):181–187, 1986.
- 174
Charles M. Newman. Fourier transforms with only real zeros. Proc. Amer. Math. Soc., 61(2):245–251 (1977), 1976.
- 175
Charles M. Newman and Wei Wu. Constants of de Bruijn–Newman type in analytic number theory and statistical physics. Bull. Amer. Math. Soc. (N.S.), 57(4):595–614, 2020.
- 176
T. S. Norfolk, A. Ruttan, and R. S. Varga. A lower bound for the de Bruijn-Newman constant
. II. In Progress in approximation theory (Tampa, FL, 1990), volume 19 of Springer Ser. Comput. Math., pages 403–418. Springer, New York, 1992.- 177
A. M. Odlyzko. An improved bound for the de Bruijn-Newman constant. volume 25, pages 293–303. 2000. Mathematical journey through analysis, matrix theory and scientific computation (Kent, OH, 1999).
- 178
Cheng Dong Pan. On the least prime in an arithmetical progression. Sci. Record (N.S.), 1:311–313, 1957.
- 179
Cheng Dong Pan. On the least prime in an arithmetical progression. Acta. Sci. Natur. Univ. Pekinensis, 4:1–34, 1958.
- 180
A. S. Peck. On the differences between consecutive primes. PhD thesis, University of Oxford, 1996.
- 181
A. S. Peck. Differences Between Consecutive Primes. Proceedings of the London Mathematical Society, 76(1):33–69, January 1998.
- 182
Eric Phillips. The zeta-function of riemann; further developments of van der corput’s method. The Quarterly Journal of Mathematics, os-4(1):209–225, 1933.
- 183
J. Pintz. On primes in short intervals. I. Studia Sci. Math. Hungar., 16(3-4):395–414, 1981.
- 184
J. Pintz. On the density theorem of Halász and Turán. Acta Math. Hungar., 166(1):48–56, 2022.
- 185
János Pintz. Density theorems for Riemann’s zeta-function near the line
. Acta Arithmetica, 208(1):1–13, 2023.- 186
Dave Platt and Tim Trudgian. The Riemann hypothesis is true up to
. Bull. Lond. Math. Soc., 53(3):792–797, 2021.- 187
G. Pólya. über trigonometrische Integrale mit nur reellen Nullstellen. J. Reine Angew. Math., 158:6–18, 1927.
- 188
D. H. J. Polymath. Effective approximation of heat flow evolution of the Riemann
function, and a new upper bound for the de Bruijn-Newman constant. Res. Math. Sci., 6(3):Paper No. 31, 67, 2019.- 189
Olivier Ramaré. On šnirel’man’s constant. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Ser. 4, 22(4):645–706, 1995.
- 190
R. A. Rankin. VAN DER CORPUT’S METHOD AND THE THEORY OF EXPONENT PAIRS. The Quarterly Journal of Mathematics, 6(1):147–153, 1955.
- 191
Hans-Egon Richert. Verschärfung der Abschätzung beim Dirichletschen Teilerproblem. Mathematische Zeitschrift, 58(1):204–218, December 1953.
- 192
O. Robert. An analogue of van der Corput’s
-process for exponential sums. Mathematika, 49(1-2):167–183, 2002.- 193
O. Robert and P. Sargos. A fourth derivative test for exponential sums. Compositio Mathematica, 130(3):275–292, 2002.
- 194
Olivier Robert. Zur abschätzung von
. Nachr. Ges. Wiss. Göttingen, math.-phys, pages 155–158, 1924.- 195
Olivier Robert. Quelques paires d’exposants par la méthode de Vinogradov. J. Théor. Nombres Bordeaux, 14(1):271–285, 2002.
- 196
Olivier Robert. On the fourth derivative test for exponential sums. Forum Mathematicum, 28(2):403–404, March 2016.
- 197
Olivier Robert. On van der Corput’s
-th derivative test for exponential sums. Indag. Math. (N.S.), 27(2):559–589, 2016.- 198
Olivier Robert and Patrick Sargos. Applications des systèmes diophantiens aux Sommes d’exponentielles. PhD thesis, Nancy 1, 2001.
- 199
Brad Rodgers and Terence Tao. The de Bruijn–Newman constant is non-negative. Forum Math. Pi, 8:e6, 62, 2020.
- 200
Imre Z. Ruzsa. Essential components. Proceedings of the London Mathematical Society, s3-54(1):38–56, 01 1987.
- 201
Yannick Saouter, Xavier Gourdon, and Patrick Demichel. An improved lower bound for the de Bruijn-Newman constant. Math. Comp., 80(276):2281–2287, 2011.
- 202
Patrick Sargos. Points Entiers Au Voisinage D’une Courbe, Sommes Trigonométriques Courtes ET Paires D’exposants. Proceedings of the London Mathematical Society, s3-70(2):285–312, March 1995.
- 203
Patrick Sargos. An analog of van der Corput’s
-process for exponential sums. Acta Arithmetica, 110(3):219–231, 2003.- 204
L. Schnirelmann. Über additive eigenschaften von zahlen. Mathematische Annalen, 107(1):649–690, December 1933.
- 205
Atle Selberg. On the normal density of primes in small intervals, and the difference between consecutive primes. Arch. Math. Naturvid., 47(6):87–105, 1943.
- 206
Atle Selberg. Contributions to the theory of the Riemann zeta-function. Arch. Math. Naturvid., 48(5):89–155, 1946.
- 207
Atle Selberg. Collected papers. II. Springer Collected Works in Mathematics. Springer, Heidelberg, 2014. Reprint of the 1991 edition [MR1295844], With a foreword by K. Chandrasekharan.
- 208
Aleksander Simonic. Explicit zero density estimate for the Riemann zeta-function near the critical line. J. Math. Anal. Appl., 491(1):124303, 41, 2020.
- 209
Julia Stadlmann. On the mean square gap between primes, 2022.
- 210
T. Tao. A cheap version of nonstandard analysis. https://terrytao.wordpress.com/2012/04/02/a-cheap-version-of-nonstandard-analysis/. Accessed: 2024-08-02.
- 211
Terence Tao, Tim Trudgian, and Andrew Yang. New exponent pairs, zero density estimates, and zero additive energy estimates: a systematic approach, 2025.
- 212
H. J. J. te Riele. A new lower bound for the de Bruijn-Newman constant. Numer. Math., 58(6):661–667, 1991.
- 213
E. C. Titchmarsh. A divisor problem. Rend. Circ. Matem. Palermo, 52(1):414–429, 12 1930.
- 214
E. C. Titchmarsh. On van der Corput’s method and the zeta-function of Riemann (II). The Quarterly Journal of Mathematics, os-2(1):313–320, 01 1931.
- 215
E. C. Titchmarsh. ON DIVISOR PROBLEMS. The Quarterly Journal of Mathematics, os-9(1):216–220, 1938.
- 216
E. C. Titchmarsh. On the order of
. The Quarterly Journal of Mathematics, os-13(1):11–17, 1942.- 217
E. C. Titchmarsh. The Theory of the Riemann Zeta-function. Oxford Science Publications, Oxford, 1986.
- 218
Timothy S. Trudgian and Andrew Yang. Toward optimal exponent pairs, 2023.
- 219
P. Turán. On a density theorem of Yu. V. Linnik. Magyar Tud. Akad. Mat. Kutató Int. Közl., 6:165–179, 1961.
- 220
J. H. van Lint and H.-E. Richert. On primes in arithmetic progressions. Acta Arith., 11:209–216, 1965.
- 221
R. C. Vaughan. On waring’s problem for smaller exponents. Proceedings of the London Mathematical Society, s3-52(3):445–463, May 1986.
- 222
Georges Voronoi. Sur un problème du calcul des fonctions asymptotiques. Journal für die reine und angewandte Mathematik, 126:241–282, 1903.
- 223
Arnold Walfisz. Über zwei Gitterpunktprobleme. Mathematische Annalen, 95(1):69–83, December 1926.
- 224
Arnold Walfisz. Zur additiven Zahlentheorie. II. Math. Z., 40(1):592–607, 1936.
- 225
Wei Wang. On the least prime in an arithmetic progression. Acta Math. Sinica, 29(6):826–836, 1986.
- 226
Wei Wang. On the least prime in an arithmetic progression. Acta Math. Sinica (N.S.), 7(3):279–289, 1991. A Chinese summary appears in Acta Math. Sinica 35 (1992), no. 4, 575.
- 227
N. Watt. Exponential Sums and the Riemann Zeta-Function II. Journal of the London Mathematical Society, s2-39(3):385–404, June 1989.
- 228
N. Watt. Short intervals almost all containing primes. Acta Arith., 72(2):131–167, 1995.
- 229
Roy E. Wild. On the number of primitive Pythagorean triangles with area less than
. Pacific J. Math., 5:85–91, 1955.- 230
Dieter Wolke. Grosse Differenzen zwischen aufeinanderfolgenden Primzahlen. Math. Ann., 218(3):269–271, 1975.
- 231
K. C. Wong. Contribution to analytic number theory. PhD thesis, Cardiff, 1996.
- 232
Trevor D. Wooley. Large improvements in waring’s problem. Annals of Mathematics, 135(1):131–164, 1992.
- 233
Trevor D. Wooley. On waring’s problem for intermediate powers. Acta Arithmetica, 176(3):241–247, 2016.
- 234
Ping Xi and Junren Zheng. On the brun–titchmarsh theorem, 2024.
- 235
Triantafyllos Xylouris. Über die Linniksche Konstante. PhD thesis, Universität Heidelberg, 2009.
- 236
Triantafyllos Xylouris. On the least prime in an arithmetic progression and estimates for the zeros of Dirichlet
-functions. Acta Arith., 150(1):65–91, 2011.- 237
Triantafyllos Xylouris. Über die Nullstellen der Dirichletschen L-Funktionen und die kleinste Primzahl in einer arithmetischen Progression. PhD thesis, Universität Bonn, 2011.
- 238
Gang Yu. The Differences Between Consecutive Primes. Bulletin of the London Mathematical Society, 28(3):242–248, May 1996.
- 239
Ming-i Yüh. A divisor problem. Acta Math. Sinica, 8:496–506, 1958.
- 240
Ming-i Yüh and Fang Wu. On the divisor problem for
. Sci. Sinica, 11:1055–1060, 1962.- 241
Lilu Zhao. On the waring–goldbach problem for fourth and sixth powers. Proceedings of the London Mathematical Society, 108(6):1593–1622, 2014.