Analytic Number Theory Exponent Database

3 Basic Fourier estimates

Lemma 3.1 L2 integral estimate

Let ξ1,,ξR be real numbers that are 1/N-separated. Then for any interval I of length T, and any sequence a1,,aR of complex numbers one has

I|r=1Rare(ξrt)|2 dt=(T+O(N))r=1R|ar|2.
Proof